

Precise and fast timing with PICOSEC Micromegas:

towards a higher technology readiness level for future HEP applications

Florian M. Brunbauer

on behalf of the EP-DT-DD GDD team and the PICOSEC Micromegas collaboration

Precise timing with MPGDs

MicroPattern Gaseous Detectors provide high gain, robustness and allow for large area coverage but timing resolution is inherently limited by **timing jitter** introduced by ionisation along **gaseous active volumes**.

Cherenkov radiator +

Photocathode

Micromegas

↓

All primary electrons produced at photocathode → well-defined location & time

Timing jitter of ≈ tens of ps

Tileable multi-channel detector modules for larger area coverage

Robustness

- Resistive Micromegas
- Robust photocathodes

Integration

- Mechanics to preserve planarity
- Tileing and sealed detectors

Electronics

- Signal routing and sharing
- Dedicated fast preamplifiers
- Multi-channel digitisers

Single pad (2016)

ø1 cm

Tileable multi-channel detector modules for larger area coverage

Robustness

- Resistive Micromegas
- Robust photocathodes

Integration

- Mechanics to preserve planarity
- Tileing and sealed detectors

Electronics

- Signal routing and sharing
- Dedicated fast preamplifiers
- Multi-channel digitisers

Resistive Micromegas

Resistive layers limit the destructive effect of discharges. Different resistive readout approaches (layer, discrete, resistivities $10k\Omega/sq - 80M\Omega/sq$) were evaluated.

- Good timing performance of $\sigma = 41ps$
- Stable operation in intense **Pion beams**
- Sharing of signals in multi-pad resistive detectors

T. Alexopoulos et al., NIMA **640** (2011) 110-118

Resistive multi-pad Picosec

T. Papaevangelou, L. Sohl, CEA Saclay

Robust photocathodes

CsI is baseline photocathode but suffers from humidity and ion back flow. Alternatives explored and validated in test beams.

- Up to $\sigma = 34$ ps with **DLC** in test beam campaign + large DLC photocathode used in multi-channel prototype
- Dedicated ASSET setup for QE and ageing studies
- Study of **alternative photocathode** materials (DLC, B₄C, nanodiamonds) and ion-bombardment robustness

https://indico.cern.ch/event/709670/contributions/3020862/attachments/1672921/2684467/

Tileable multi-channel detector modules for larger area coverage

Robustness

- Resistive Micromegas
- Robust photocathodes

Integration

- Mechanics to preserve planarity
- Tileing and sealed detectors

Electronics

- Signal routing and sharing
- Dedicated fast preamplifiers
- Multi-channel digitisers

Mechanics to preserve planarity

Precisely maintained preampfification gap thickness is crucial to minimise signal arrival time differences which can degrade timing resolution.

- Hybrid ceramic+FR4 PCB for rigidity implemented in MPT workshop achieving **planarity** on the level of ≈10µm
- Excellent timing response across **10x10cm²**

Integration on **ceramic/FR4** PCB with planarity <10µm across 10x10cm²

Antonija Utrobičić

Tileing and sealed detectors

Compact detector vessels with 10x10cm² active area with systems (HV, bias, readout) on the back of module.

- 4-side tileable detector module prototypes with 100 channels (1x1 cm² pads) validated in test beam campaigns
- Hermetically sealed detector module being developed with support from EN-MME & EP-DT-EO: simplified services, increased fill factor, cleanliness for photocathode)

Detector module

Sealed vessel

Marta Lisowska

Tileable multi-channel detector modules for larger area coverage

Robustness

- Resistive Micromegas
- Robust photocathodes

Integration

- Mechanics to preserve planarity
- Tileing and sealed detectors

Electronics

- Signal routing and sharing
- Dedicated fast preamplifiers
- Multi-channel digitisers

Signal routing and sharing

Signals from readout pads routed through **multi-layer PCBs** to preamplifiers.

 Good timing resolution can be preserved for signals shared across multiple readout pads of different geometries

Dedicated fast preamplifiers

Custom development of preamplifiers dedicated for precise timing PICOSEC detectors.

- Evaluation of different approaches and implementations to **preserve timing** precision
- Readout of multi-channel detectors with preamplifier cards integrated on back of PICOSEC modules

The state of the s

 $\sigma = 31ps$

Custom preamp. cards on 10x10 module in test beam

Multi-channel digitisers

SAMPIC waveform TDC evaluated for timing performance with PICOSEC Micromegas detectors

- Good reproduction of timing performance measured at 8.5 GS/s sampling frequency
- Evaluation of alternative readout approaches (e.g. multi-threshold ToT ongoing)

Picosec Micromegas

The **PICOSEC** detection concept has demonstrated **24** ps for MIPs and can provide precise ps-timing to meet the challenging timing needs of future HEP experiments.

Resistive Micromegas, robust photocathodes, sealed prototypes and tileable multi-pad modules and scalable readout electronics are developed and validated in beam test campaigns.

Detector prototypes with **optimisations for different use cases** under study and in preparation.

Future perspectives

Spatial resolution: exploiting signal sharing with resistive anodes, adjusting pad size

Robust photocathodes: alternative materials, protection layers

Optical readout: e.g. SiPMs for granularity

Amplification structure: optimised double/single gaps, mesh geometries/technologies, resistive multi-pad

Electronics: waveform digitisation, threshold based timing

10x10 pad Picosec Micromegas detector

Preamplifier cards

Module with robust DLC photocathode

100 channel prototype with CsI photocathode

Hermetic vessel for higher fill factor tileing