EP R&D Day 2021

Status of Noble Liquid Calorimetry WP3.1

11/11/2021

Maria Asuncion Barba Higueras(TE)
Brieuc François (EP)
Martin Aleksa (EP)
Michel Chalifour (TE)
Johan Bremer (TE)

Outline

Part 1: PCB electrodes design with noise and cross-talk mitigation

- Introduction
- Multilayer PCB electrodes
- > PCB electrode design
- Noise studies
- Cross-talk studies
- Performance studies
- ▶ Plans

Part 2: Signal extraction from the cryostat → development of high-density feedthroughs

- Introduction
- Solution studied
- Selection of components
- Experimental tests
- Mechanical simulations

Part 1: PCB electrodes design with noise and cross-talk mitigation

Introduction

- »Noble Liquid calorimetry is a well proven technology
 - Successfully operated/operating in D0, H1, NA48/62, ATLAS, ...
- ≻Key features
 - Radiation hardness, long term stability
 - Linear response, uniformity, high control over systematics
 - Good energy/timing resolution

- >Very promising candidate to meet future experiment's requirements
 - Proposed as the baseline for FCC-hh ECAL + Hadronic Endcap/Forward and LHeC ECAL
 - Adapted to an e⁺e⁻ experiment (FCC-ee), leading to a very interesting option
- >R&D direction: optimization for particle flow reconstruction on top of conventional calorimetry
 - Higher granularity: PCB electrodes design with noise and cross-talk mitigation + signal extraction from the cryostat

Multilayer PCB electrodes

»ATLAS signal extraction: first longitudinal layer read from inner radius, middle and back layers read from outer radius

- Kapton electrode implementation
 - > 3 layers glued together
 - > 2 HV layers + 1 signal layer
- Signal routed via traces in the same layer as the pad, alongside other cells
- Longitudinal granularity limited by by trace density/cross-talk

Higher granularity can be achieved thanks to multilayer PCB electrode

- >Traces can run beneath other cells, inside the PCB
- Prevent cross talk with ground shields
- Ground shields increase the capacitance → noise

- ⊳C_{detector}: signal pad absorber ground
- *⊳*Careful optimization

PCB Electrode Design

 $\theta = 89.44^{\circ}$

- >Implementation of the PCB electrode in CAD (Cadence Allegro®)
 - Lower the number of signal traces/ground shields by reading two signal pads with one trace and maximize spacing between traces
 - Keep the number of traces extracted from front low
 - Noise term dominate for low energy particles which deposit their energy mostly in early longitudinal layers

→ Derived cell capacitance from Finite Element Method tools (Ansys Maxwell®): 30 – 400 pF depending on the cell

 $\theta = 90^{\circ}$

Noise studies

SHAPER

>The noise has been estimated with an analytical implementation of the whole readout chain assuming ATLAS like electronics

- Signal extracted by 5 meters coaxial cables feeding the pre-amplifier and shaper
- ► Noise level below 5 MeV can be achieved for shaping time above 80 ns
- ightharpoonup Single MIPs can be measured with signal over noise (S/N) ratio of ≥ 3

CRYOSTAT

Cross-talk studies

signal trace-

signal pad

pad-pad

/trace-trace

→ Cross talk occurs between cells mainly due to capacitive coupling

Capacitance values extracted from Ansys Maxwell® (total capacitive coupling of 2.2 pF for the outer radius cells)

- ➤Observed cross-talk ~1% (only capacitive source considered)
- »Results currently being cross-checked with full FEM tools (Ansys HFSS 3D layout®) and scattering parameters

Performance studies

- »Geometry with inclined plate implemented in FCCSW
- $_{>}$ Baseline scenario: 2 mm Pb absorber, 1.2 mm LAr gap, 1.2 mm PCB electrodes, 50 degrees inclination, 12 longitudinal layers, $\Delta\Theta$ = 0.560, 1536 plates in phi, 1 readout cell = 2 physical cells ($\Delta\Phi$ = 8 mrad)
- ⊳Performances have been evaluated from particle gun (no noise no cross-talk)

>Various scenarios for the absorber material and noble liquid are under study

ECAL energy resolution

Plans

- > End of 2021: finalization of the FEM PCB study
- > Early 2022: Implementation of a new PCB CAD for a first prototype
 - > 1:1 scale dimensions
 - Several theta towers in one prototype (~ 20)
 - Maximize the number of scenarios tested per prototype production while staying in 'standards' dimensions

»Mid-end 2022: production and characterization of the PCB prototype

Part 2: Signal extraction from the cryostat: development of high-density feedthroughs

Introduction

»Reference: signal feedthroughs of the ATLAS LAr EM calorimeters

→GOAL: ~20 000 signal wires/feedthrough (x10 ATLAS FT: 1920 wires/feedthrough)

Solution studied

> High-density flanges: get rid of the use of connectors

Structural material with slits:

- Thickness 15 to 17 mm
- Slits (1 mm width) + 2 to 3 mm between slits + 30 mm length

Selection of components

⊳Glue selection:

Samples (welding couplings): thermally shocked and leak tested at room T°

- Epo-tek T7110 - Araldite 2011 A/B

Kapton strip

(7 candidates from literature and CERN experiments)

»Structural material selection:

Samples: thermally shocked + 3D CT scan before and after

- Accura25 (3D-printed)
- SilasticM (rubber)
- MY750 (resin)
- G11
- G10

>Sealing solution: indium seal + compression plate

Experimental tests

> Experimental results: ex.: G10 + epo-tek (glue) + Kapton strips + indium seal

Pressure and leak test at room temperature

Cooling down: leak measurements every hour (+ P, T°, Vacuum)

Warming up: leak measurements every hour (+ P, T°, Vacuum)

Mechanical simulations

>Study of different designs of the final feedthrough flange and mechanical stress simulations

Inner part

4 designs studied: 16 000 – 20 000 signal wires/flange

Mechanical simulations at room and low temperature with Autodesk Inventor:

Max. deflection: 0.79 mm (ATLAS FT 0.68 mm)

Max. Von Mises Stress: 143 MPa (below yield and tensile strength of components)

Thank you for your attention! Questions?

brieuc.francois@cern.ch

maria.asuncion.barba.higueras@cern.ch