Status of Scintillator Based Calorimetry

EP R&D Day 2021

Matteo Salomoni on behalf of WP3.2/WP3.2.1 team

11th November 2021

R&D activities: from scintillators to calorimetry

Scintillators R&D

Improve the performance of future HEP calorimeters with timing capabilities

LHCb ECAL
Upgrade 2 R&D
benefits from the
scintillators R&D

- Bulk materials:
 PWO, BGSO, GAGG, BaF₂, PbF₂, glass, etc...

 Nanomaterials:
- 2. Nanomaterials: InGaN/GaN QW, Perovskite, MOF, etc..

Fast scintillators R&D in the frame of Crystal Clear Collaboration:

WP objective:

Develop the enabling technologies for future HEP calorimeters capable of timing information. Could be operating both at low or high radiation environment.

Work plan:

- Identify key requirements in terms of scintillation properties
- Investigate fast emission processes in different scintillators materials (cross-luminescence, hot intraband luminescence, etc..).
- Investigate the possibility to use fast nanomaterials.
- Assess timing performances in test beam.

BGSO crystal: timing properties as a function of the Ge fraction

Change the properties of BGO by substituting Ge with Si

Light output improves with % of Ge and **effective decay time** decreases up to 30 - 40 % Ge. Optimal coincidence time resolution (CTR) for 40% Ge.

For a plate geometry:

CTR BGO = 302 ps -> CTR BGSO (50% Ge) = 260 ps For 2x2x3

CTR BGO = 241 ps -> CTR BGSO (40%) = 207 ps

BGSO: fast Cherenkov emission

Cherenkov emission is visible at the beginning of the pulse.

- Timing improves
- Enable to use dual readout techniques.

CsCaCl₃ shows an emission shifted towards the **visible (260 nm)** compared to traditional cross luminescence samples (BaF₂).

Fast decay components:

0.151 ns and **2.212 ns** decay time.

Cross-luminescence

from BaF_2 to $CsCaCl_3$

Sub ns emission but in UV & additional slow component (BaF2)

R&D to improve cross-luminescence:

- ⇒ Slow component suppression by doping
- ⇒ Improve PDE
- ⇒ Develop new materials

Example of fast Nanomaterials

Perego, Jet al. Nat. Photonics (2021). https://doi.org/10.1038/s41566-0 21-00769-z

CsPbBr₃ thin films deposited on glass substrate CTU

Courtesy V. Čuba, K. Děcká, A. Suchá CTU, Prague

InGaN/GaN QW FZU

Courtesy A. Hospodkova , FZU Prague

LHCb ECAL upgrade 2 activities

Objectives:

- Develop **faster and higher radiation hardness fibers** (to be place in the innermost part of the ECAL up to 1 MGy).
- Obtain a SPACAL detector capable of **good timing** performance (< **20 ps @ 50 GeV**) with small spill over.
- □ Keep the module intrinsic energy resolution in the order of $\sigma(E)/E \sim 10\%/\sqrt{E} \oplus 1\%$

Aluminum garnets

GAGG ingot, courtesy of K. Lebbou, ILM Lyon France

Intensive R&D to produce high quality crystal of fiber shape (up to 10 cm) **Garnets crystal are radiation hard**!

GAGG irradiated with protons of 24 GeV/c

- O Fluence of 3.1x10¹⁵ cm⁻²
- 910 kGy dose
- O Induced absorption below 4m⁻¹ at the emission peak [See: V. Alenkov et al., NIM A 816 (2016) 176]

Dense absorber to reach a moliere of 1.5 cm cell region

3D printed tungsten R&D (SPACAL W with GAGG)

Surface quality obtained allowed to insert scintillating fibers without damaging them (Ra = $5 \mu m$, Rt = $51 \mu m$).

Feature size small enough to fulfill the required geometry.

LHCb ECAL U2: prototypes and readout

SPACAL W GAGG 9-cells of 1.5x1.5 cm²

SPACAL Pb poly 9-cells of 3x3cm²

LHCb ECAL U2: results obtained in SPS and DESY (e⁻)

- Above 50 GeV we reach 15 ps with all the prototypes
- Energy resolution below 2% const. term for both the SPACAL Pb and SPACAL W.

Ongoing & future R&D

Preliminary

- Embed a high concentration of nanomaterials in a dense matr
- Test capability of dual readout (BGO, BGSO, PWO, etc..).
- Optimize garnet fiber production (e.g. micro pulling techniquε,
- Spill over mitigation: development of ultrafast garnets (reduce the main component and the slow component)
- R&D on radiation hard plastique (polysiloxane)

-> opportunity not only for LHCb (use case), but for future colliders (eIC, FCC, ...).