

Programme on Technologies for Future Experiments

EP R&D Software Projects and the EIC

Graeme Stewart and André Sailer, for the WP7 team

EP R&D Software Projects

- Faster Simulation
- Track Reconstruction
- Calorimeter
 Reconstruction
- Efficient Analysis
 Facilities
- Turnkey Software Stack

Full details in <u>Graeme's talk</u> <u>from yesterday</u>

Should focus on eAST and HPDF

eAST: https://qithub.com/eic/east

"[...] ease leveraging new and rapidly evolving computing technologies, [...] a common and integrated approach for fast and full detector simulations in Geant4 with a plug and play modular approach."

→ Sounds like good synergy with the Fast Simulation task

HPDF: High Performance Data Facility

→ High Performance should mean efficient

Still the other projects might be of interest

Developments for Fast Simulation

- Tools facilitating use of fast-sim models implemented into Geant4
- ML-based fast simulation
 - Demonstrated generalisation on sample geometries, for different energies and incident angles
 - Fast adaptation step allows to tune to any geometry
 - LWTNN and ONNX for inference within Geant4
 - Network optimization to reduce memory footprint of inference
- ML4Sim spin-off series of meetings
 - Machine learning for simulation discussion forum
 - Hybrid format of topical meetings and lectures
 - Discussions cover successful and unsuccessful ML tests.
 - Keep in touch mailing list!

0 iteration

After 100 iterations

After 1000 iterations

Developments for Efficient Analyses

Goals

- Full exploitation of modern storage hardware
 - SSDs, Fast Networks, Object Stores
- developing programming models that boost scientists' productivity
- helping to design specialist Analysis Facilities specifically targeting this workflow

Developments:

- ROOT::RNTuple: major upgrade of the event data file format and access API
 - 10-20% smaller files, order of magnitude better throughput
 - Closely integrated with analysis workflows
 - Support for code & data evolution over decades
- Joint EP R&D, CERN openlab, Intel and HPE activity on optimal use of object stores
 - Order of magnitude better throughput with dedicated support in the ROOT I/O layer
- Transparent Caching for Analysis Facilities
 - o Targets iterative data exploration on the same dataset in an analysis facility
 - Plugged into the RNTuple I/O pipeline, cache on the fly. No extra user code required.

Calorimeter Reconstruction

- Particle shower reconstruction in high-granularity calorimeter very interesting and crucial task in high-density environments
 - Fertile ground for new techniques and algorithms: clustering, machine learning, graph theory, and modern computer architectures
- TICL (The Iterative Clustering) is a modular framework integrated and under development in CMSSW
 - o processing calo rec-hits (x, y, z, t, E) and returning particle properties and probabilities
 - In a nutshell: grouping 2D layer clusters (CLUE) into 3D clusters (Tracksters) iteratively to reconstruct different particle species
- New flexible and GPU friendly framework can be reused in other (future) experiments using high-granularity calorimeters (not sure what is planned for EIC)

 HILLIE: 0(1/40) p.p. collisions in one burgh crossing.

 HILLIE: A lot of activity in the CMS detector.

 HILLIE: A lot of activity in the CMS detector.

 The lot of activity in the CMS detector.

multiClustersFromTrackstersEM energy = 63,3290

ACTS EP R&D Tracking project status

- ACTS is an experiment independent toolkit for track reconstruction
- Modern architecture and code, unit tested, continuous integration
- Addressing similar challenges found for calorimeter reco
 - o pileup, overlapping clusters, cpu/memory scaling

Developments

- Parallelization for memory/datamodel, geometry, and algorithms
- GPU based algorithms
- New modules: Gaussian Sum Filter, new seed finding on KD-Trees
- Full chain tracking demonstrator established (TrackML, OpenDataDetector)
 - Large scale validation and tuning efforts ongoing
 - OpenDataDetector will be a proving ground for R&D that is OpenScience

New seed finding strategy on based of KD-trees, achieving very similar tracking performance

Key4hep: Turnkey Stack

EP RnD Goals:

- Provide a single software stack for FCC and CLIC detector studies: Simulation, Reconstruction, Analysis
- Make software stack usable by other detector groups
- Testbed for other software developed in WP7

Common Software

- Gaudi Processing Framework
- EDM4hep Event Data Model using Podio
- DD4hep Geometry Toolkit
- Standard pieces, e.g., Geant4
 - Allows Fast Simulation developments to be integrated

Conclusions

- WP7 is development basic solutions necessary for
 - Faster Simulations
 - Track Reconstruction
 - Calorimeter Reconstruction
 - Efficient Analysis Facilities
 - Framework for testing above (and beyond)
- Due to genericity of the solutions or their implementation in standard packages (Geant4, ROOT, Gaudi) synergy for the EIC project should be possible