

POSITRON CAPTURE SIMULATIONS OF THE FCC-EE POSITRON SOURCE

On behalf of the FCC-ee positron source team

Outline

- Introduction to the simulation
- Beam parameters
- Target
- Matching device
- Capture linac
- Optimisation and preliminary results
- Summary

Introduction

Layouts used in simulation:

FC used as MD

HTS solenoid used as MD

Important quantities

Accepted e+ yield:

$$\eta_{ ext{Accepted}}^{e^+} = rac{N_{ ext{DR accepted}}^{e^+}}{N_{ ext{Primarv}}^{e^-}}$$

Peak energy deposition density (PEDD): < 35 J/g

Simulation tools:

- **Geant4**: target ("conventional") simulation
 - Gaussian function used for primary e- distributions
- **RF-Track**: beam tracking in MD and capture linac
- Tracking in injector linac is longitudinally simulated with **analytic** formula:

$$\Delta E = (1.54 \,\text{GeV} - E_{\text{ref}}) \cdot \cos[\omega \cdot (t - t_{\text{ref}})]$$

- Reference particle with energy around 200 MeV
- S-band frequency: 2.856 GHz

Beam parameters

Parameters	Values	Units
Primary electrons at the target entrance		
Beam energy	6	GeV
Spot size (RMS)	0.5	mm
Bunch length (RMS)	1	mm
Energy spread (RMS)	0.1	%
Normalised transverse emittance (RMS)	15*	mm∙mrad
Number of bunches per pulse	2	
Repetition rate	200	Hz
Normalised beam power	$16.8 / \eta_{e^+}$	kW
Normalised beam fluence	$6.2 \times 10^{11} / \eta_{e^+}$	cm ⁻ 2

- If larger emittance (60 mm*mrad) assumed for primary e-, the difference in positron yield is negligible
- Time window might be larger or smaller. To be dsicussed with the DR team for a better definition, as well as the dynamic aperture, matched to the DR acceptance

Positrons at the DR entrance		
Bunch charge required	7	nC
Energy window cut	1540 ± 58.5	MeV
Time window cut (total)	17.5 [†]	mm/c

- (4.37E+10 e+ / bunch, 3.5 nC safety margin included) (±3.8% @ 1.54 GeV)
- (60° @ 2.856 GHz RF)

Target

- Alternative option, with <u>potential smaller PEDD</u> and safer radiation and thermal load, for which the study is still in progress
- Low e+ yield due to large beam size arriving at the amorphous target
- Therefore, not adopted in this study

Conventional target scheme

- Baseline option
- High e+ yield
- PEDD is no more a problem
- Adopted in this study

Target ("conventional" scheme)		
Thickness	17.5	mm
Positron yield at target exit	13.7	e^+/e^-
Normalised PEDD	$25.6 / \eta_{e^+}$	J/g
Normalised deposited power	4.0 / η_{e^+}	kW

Matching device (MD)

Flux Concentrator (FC) designed by P. Martyshkin (BINP)

Compared with HTS solenoid:

- Low peak field (5-7 T, ~1.5-3 T at target exit)
- Small entrance aperture ($\Phi = 8-16$ mm)
- Fixed target position (2–5 mm upstream)
- Therefore, low e+ yield

High-Temperature Superconducting (HTS) solenoid designed by J. Kosse et al. (PSI)

Compared with FC:

- High peak field (~15 T, ~12 T at target exit)
- Large aperture ($\Phi = 40 \text{ mm}$)
- Flexible target position (can be placed inside the bore)
- Therefore, high e+ yield

FCC

Matching device (MD)

FC on-axis field, with fixed target position (overlapped with a 0.5 T NC solenoid field)

HTS solenoid field, with optimised target position

Capture linac

- $2\pi/3$ mode, 2 GHz, 1.5 m long, 20 cm distance
- Aperture diameter: 40–28 mm (40 mm assumed, as it's technically possible)
- Number of RF structures: 1 dec. + 10 acc.
- Average gradient: 17.5 MV/m and 21 MV/m
- Solenoid: 0.5 T NC

S-band field profile designed by R. Zennaro (PSI)

- 3 GHz, 1.2 m long, 15 cm distance
- Aperture diameter: 40 mm
- Number of RF structures: 1 dec. + 12 acc.
- Average gradient: 18 MV/m
- Solenoid: 1.5 T SC

Large-R L-band field profile designed by H. Pommerenke and A. Grudiev (CERN)

- $9\pi/10$ mode, 2 GHz, 3 m long, 24 cm distance
- Aperture diameter: 60 mm assumed
- Number of RF structures: 1 dec. + 4 acc.
- Average gradient: 20 MV/m
- Solenoid: 0.5 T NC / 1.5 T SC

Constant solenoid field assumed so far. Starting to use a more realistic field in following studies

Optimisation of target position

FCC

- Max. shielding thickness: ~21 mm
- In case of any big changes, the distance needs to be re-optimised

Capture linac options	Optimised distance [mm]	Accepted e+ yield
CLIC L-band @ 0.5 T	41	5.1
PSI S-band @ 1.5 T	20	6.6
Large-R L-band @ 0.5 T	37	6.3
Large-R L-band @ 1.5 T	24	7.2

Optimisation of analytic HTS solenoid as a cross-check

J: ave. current density

a: Inner radius

b: Outer radius

I: half length

$B_{z} = \frac{1}{2} J a [F(\alpha, \beta_{1}) + F(\alpha, \beta_{2})],$
$F(\alpha, \beta) = \mu_0 \beta \ln \frac{\alpha + (\alpha^2 + \beta^2)^{\frac{1}{2}}}{1 + (1 + \beta^2)^{\frac{1}{2}}},$
$\alpha = b/a$ $\beta_1 = (l-z)/a$ $\beta_2 = (l+z)/a$
(MARTIN N. WILSON, 1983)

Analytic formula for HTS solenoid

W	Winding parameters			Target exit	Accepted	l e+ Yield
J [A/mm²]	a [mm]	b [mm]	l [mm]	position [mm]	Analytic HTS	Designed HTS
580	60	115	30	41	4.9	5.1
890	60	90	196	195	5.5	-

- → Consistent results between analytic and designed HTS, given similar winding parameters
- → Optimisation of analytic HTS (preliminary) using very loose constraints gains not much (~8%) in e+ yield improvement, though optimised parameters are more challenging and expensive
- → Therefore, the current HTS design is expected to be optimal (or close to optimal) in terms of accepted e+ yield

Results (preliminary)

· Positron yield results

FCC

Capture options		MD e+ yield	Capture linac e+ yield	DR accepted e+ yield
FC (7 T) +	CLIC L-band @ 0.5 T	9.4	3.5	3.2 *
FC (7 T) +	PSI S-band @ 1.5 T	9.8	6.3	4.4
HTS +	CLIC L-band @ 0.5 T	13.5	5.9	5.1
HTS+	PSI S-band @ 1.5 T	13.6	9.7	6.6
HTS + Large-R L-band @ 0.3 T		13.5	6.1	4.7
HTS + Large-R L-band @ 0.5 T		13.5	8.1	6.3
HTS + L	arge-R L-band @ 1.5 T	13.5	11.6	7.2

^{*} For comparison, previous result is ~2.4 with larger primary e- beam size (IPAC'21)

- → HTS solenoid improves final yield by ~50-60% compared with FC (3.2→5.1, 4.4→6.6)
- → SC solenoid field (capture linac) improves final yield significantly compared with NC field
- → Larger aperture (R = 30 mm) L-band improves final yield by ~10-25% compared with normal aperture (R = 20 mm) (5.1→6.3, 6.6→7.2)
- → Larger aperture also allows to reduce NC solenoid from 0.5 T to 0.3 T without much loss (~10%) in final yield compared with normal aperture (R = 20 mm) (5.1→4.7)

Results (preliminary)

Longitudinal phase space at DR entrance

(Yield: 6.6)

FCC

- ✓ Reference time (window center) set to 0
- Energy & time cut window also displayed
- ✓ 10,000 primary e- simulated
- Overflow & underflow positrons beyond the plotting ranges also displayed in the statistics box

(Yield: 7.2)

(Yield: 4.7)

Summary

- Preliminary results presented for different capture options. <u>Compared with previous results</u>, <u>yield improved</u>
 <u>significantly</u>, due to new beam parameters or SC implementation or larger RF aperture
 - ✓ HTS solenoid improves final yield by ~50-60% compared with FC
 - ∠ Larger aperture (R = 30 mm) L-band improves final yield by ~10−25% compared with normal aperture (R = 20 mm)
 - ✓ SC solenoid field (capture linac) improves final yield significantly compared with NC field.
 - ✓ Larger aperture also allows to reduce NC solenoid from 0.5 T to 0.3 T without much loss (~10%) in final yield compared with normal aperture (R = 20 mm)

Next step:

- → Discuss with the DR team for a better match to DR acceptance: time window, dynamic aperture, XY emittances, etc.
- → More realistic solenoid field to be implemented for capture linac (now using constant field for simplicity in optimisation)
- → RF gradients & phases are preliminary and can still be re-optimised a bit
- To be presented at IPAC'22 but using smaller time window and large-R L-band not included. To update if time allows
- → Cooperate on other on-going studies: <u>radiation load</u>, <u>linac design</u>, <u>magnet design</u> and <u>e+ transport in injector linac</u>, etc. Find more details in other talks this afternoon

Thank you for your attention.

Scan of shielding thickness for HTS solenoid and NC solenoid field

Smaller time window (9.3 mm/c) still used in left plot, but not changing the conclusion