

Laurent Delprat

This project has received funding from the European Union's Horizon 2020 research and innovation programme under grant agreement No 951754.

UPDATE ON THE CRYOGENIC DESIGN FOR THE FCC-EE MACHINE

L. Delprat, B. Bradu, K. Brodzinski (CERN/TE-CRG)

30 mai 2022 à 3 juin 2022 Campus des Cordeliers - Sorbonne Université EDMS: <u>2706080</u> Indico: <u>1064327</u>

Introduction

FCC

Topics developed throughout the talk

- 1. Reminder: *CDR cryo design (now obsolete)* for the –ee machine (layout, cryo points location, heat loads from RF)
- 2. Recent *update on the layout* and on the heat loads from the RF / impact on the cryo design in terms of integration, cooling needs and infrastructures modification / proposed solutions
- 3. Upcoming *objectives and tentative timeline* to issue the feasibility report by end of 2025
- 4. Spare slides: quick availability study for the –hh configuration

4 5 6

21

<u>31</u>

Table of content

1. FCC-ee conceptual design

Cryogenic layout	
Distribution lines	
Helium inventory and electrical consumption	

2. Latest developments

Updated accelerator layout	<u>7</u>
Revised RF heat loads and layout	<u>8</u>
FCC-ee cryogenic design update	<u>10</u>
Cryogenic cooling scheme for cavities	<u>18</u>

3. Cryogenics work organization

Jpcoming objectives	and associated timeline	<u>20</u>
---------------------	-------------------------	-----------

Conclusion

Perspectives

Spares

○ FCC

Cryogenic availability study for FCC-hh

FCC-ee conceptual design

General layout of the cryogenic system

- <u>Refrigeration plants wrt machine</u>
 - Z, W: 1 cryoplant
 - H: 2 cryoplants
 - ttbar: 4 cryoplants
- <u>Technical sites wrt machine</u>
 - Z, W: 1 technical site
 - H, ttbar: 2 technical sites

Half-LSS of 700 m

- SRF straight sections in PD & PJ
 - Each of them 1.4 km long i.e. cryogenic distribution on the equivalent length
 - "Staging" of the QRL (see next slide)

🔵 FCC

\mathbb{X}

FCC-ee conceptual design

Cryogenic distribution line

- Machines Z, W, H
 - 4 internal lines (C, D, E, F)
 - <u>DN650</u> •
- Machines ttbar 🔨
 - +2 internal lines for 30 mbar pumping of 800 MHz cavities
 = 6 internal lines in total
 - <u>DN850</u>

Component	Diameter
	(mm)
Line A	50
Line B	300
Line C	100
Line D	200
Line E	80
Line F	80
Vacuum jacket 400 MHz cryomodules	550*
Vacuum jacket 800 MHz cryomodules	750*

. *+100 mm for bellows and flanges.

FCC-ee conceptual design

Helium inventory and electrical consumption

- Total helium inventory of ≈ 26 t for ttbar machines (40 kg of He per cryomodule)
- Required electrical power varies
 - from 1 MW for the Z machine
 - to 50 MW for ttbar2 machine

Machine	Ζ	WW	ZH	$t\overline{t}1$	tt2
Cryomodules (t)	1.2	1.6	4.1	11.0	12.6
Distribution (t)	3.9	3.9	7.9	8.9	8.9
Cryoplant (t)	1	1	2	4	4
Total (t)	6	7	14	26	26
Number of $250 \mathrm{m}^3$ MP storage tanks	8	8	18	30	32

	Installed p	oower (MV	V)	Nominal 1	ower (MW)	
Working point	Per plant	Per site	Total	Per plant	Per site	Total
2	0.9	0.9	0.9	0.8	0.8	0.8
VW	9.5	9.5	9.5	7.1	7.1	7.1
CΗ	9.5	9.5	19	8.3	8.3	17
t1	14	29	58	12	23	46
$\overline{t}2$	14	29	58	13	25	50

 250 m³ medium-pressure (20 bar) storage tanks located in PD & PJ

Updated accelerator layout

Civil engineering

FCC

• Quasi-circular tunnel, **diameter 5.5 m**, depth ≈ 300 m (*deepest shaft 399 m*!), slope < 1%

Revised RF layout and heat loads for FCC-ee

Heat loads

FCC

- Updated May 24th'22:
- Number of cryomodules
- Heat loads per cryomodule
- Cryomodules arrangement along the ring
- Cryogenic cooling distribution (400 & 800 MHz collider cryomodules are geographically separated)

24th May 2022	Z		w			н		ttbar2	
	per beam	booster	per beam	booster	2 beams	booster	2 beams	2 beams	booster
Frequency [MHz]	400	800	400	800	400	800	400	800	800
RF voltage [MV]	120	140	1000	1000	2480	2480	2480	9190	11670
Eacc [MV/m]	5.72	6.23	11.91	24.26	11.82	25.45	11.82	24.52	25.11
# cell / cav	1	5	2	5	2	5	2	5	5
Vcavity [MV]	2.14	5.83	8.93	22.73	8.86	23.85	8.86	22.98	23.53
#cells	56	120	224	220	560	520	560	2000	2480
# cavities	56	24	112	44	280	104	280	400	496
# CM	14	6	28	11	70	26	70	100	124
T operation [K]	4.5	2	4.5	2	4.5	2	4.5	2	2
dyn losses/cav [W]	19	0.5	174	7	171	8	171	51	8
stat losses/cav [W]	8	8	8	8	8	8	8	8	8
yon	0.02.01	0122-00	4122.00	0.02.00	2102-00	A.E.E 07	0.02.00		0102.07
Detuning [kHz]	8.939	4.393	0.430	0.115	0.123	0.031	0.025	0.040	0.005
Pcav [kW]	880	205	440	112	352	95	62	207	20
rhob [m]	9937	9937	9937	9937	9937	9937	9937	9937	9937
Energy [GeV]	45.6	45.6	80.0	80.0	120.0	120.0	18	2.5	182.5
energy loss [MV]	38.49	38.49	364.63	364.63	1845.94	1845.94	987	5.14	9875.14
cos phi	0.32	0.27	0.36	0.36	0.74	0.74	0.70	0.90	0.85
Beam current [A]	1.280	0.128	0.135	0.0135	0.0534	0.005	0.010	0.010	0.001

∩ FCC

Laurent Delprat

○ FCC

CERN 10

FCC-ee cryogenic heat loads update

Point L	Z	W	Н	ttbar
Thermal shields [50 K – 75 K]	2.7 kW	5.4 kW	7.7 kW	14.6 kW
Cryomodules @ 4.5 K	3 kW	40.8 kW	51.5 kW	51.5 kW
Cryomodules @ 2K	0.2 kW	0.7 kW	1.7 kW	15.8 kW
Total equivalent @ 4.5 K (Including 30% margin)	5 kW	57 kW	73 kW	140 kW

Point H	Z	W	Н	ttbar
Thermal shields [50 K – 75 K]			9.0 kW	
Cryomodules @ 4.5 K		N/A		
Cryomodules @ 2K			U	15.8 kW
Total equivalent @ 4.5 K (Including 30% margin)				75 kW

FCC-ee cryoplants and electrical power update

Point L	Z	W	Н	ttbar
# of cryoplants	1	1	1	2
Installed capacity @ 4.5K (per cryoplant)	6 kW	60 kW	75 kW	75 kW
Included capacity @ 2K (per cryoplant)	0.5 kW	0.9 kW	2.2 kW	11 kW
Nominal elec. Power (in total for point L)	1.3 MW	12.6 MW	15.8 MW	31.5 MW
		147		441
Point H	Z	W	Н	ttbar
Point H # of cryoplants	Z	W	Н	ttbar 2
Point H # of cryoplants Installed capacity @ 4.5K (per cryoplant)	Z	W	Н	ttbar 2 38 kW
Point H # of cryoplants Installed capacity @ 4.5K (per cryoplant) Included capacity @ 2K (per cryoplant)	Z	w NO CRY	Н	ttbar 2 38 kW 11 kW

FCC-ee helium inventory update

Point L	Z	WW	ZH	ttbar
Cryomodules	1.4 tons	2.7 tons	3.8 tons	7.2 tons
Distribution	4.9 tons	4.9 tons	4.9 tons	4.9 tons
Cryoplants	1 ton	1 ton	1 ton	2 tons
Total	7.3 tons	8.6 tons	9.7 tons	14.1 tons
Point H	Z	W	Н	ttbar
Cryomodules				4.4 tons
Distribution			•	3.8 tons
Cryoplants		NUCRI	U	2 tons
Total				10.2 tons

> Total helium inventory for FCC-ee (ttbar) = 24 tons

○ FCC

Point L cryogenic layout (ttbar)

QRL cross section for 400 MHz cryomodules

Point H cryogenic layout

3 different options studied due to access pit location geographical constraints

- Option 1: all cryo installed in a dedicated cavern at the LSS center
- Option 2: half of cryo installed in a dedicated cavern at the LSS center
- Option 3: all cryo installed in the usual service cavern
- > See next slides

∩ FCC

Point H option 1: all cryo in a dedicated cavern at the LSS center

Diameter (mm)

80

320

80

80

650*

QRL cross section (both sides)

Point H option 2: half of cryo in a dedicated cavern at the LSS center

QRL Header	Diameter (mm)
A (left/right)	100/80
B (left/right)	400/320
E	80
F	80
Vacuum jacket (left/right)	800/650*
*	1.0

+100 mm for bellows and flanges

QRL cross section for left side

QRL cross section for right side

Point H option 3: all cryo in the usual service cavern

FCC

Compromise for cryo

- → Allow redundancy between cryoplants as in Point L
- → Accessibility of cryo equipment ensured
- → Much longer QRL length (1400m) → larger QRL diameters
- ➔ Need to separate pumping lines for the 2 cryoplants

Medium impact for civil engineering

- No extra tunnel/cavern to build
- Need to enlarge the LSS tunnel because of a larger QRL

QRL cross section for left side

QRL cross section for right side

QRL Header	Diameter (mm)					
A1/A2	100/120					
B1/B2	400/460					
E	80					
F	80					
Vacuum jacket 1200/900* (left/right)						
* +100 mm for bellows and flanges						

Cryogenic cooling scheme for cavities bath at 4.5 K

This scheme relates to Point L infrastructure.

Design of the cryostat will require close collaboration between SY-RF and TE-CRG to optimize for:

- Thermal heat load,
- stability of operation parameters,
- and helium inventory.

Nota 1: depending on design of the cryomodule additional cool down/warm up circuit can be installed on the bottom of the helium tank.

Laurent Delprat

FCC

Cryogenic cooling scheme for cavities bath at 2 K

This scheme relates to Point L and H for all cavities cooled with superfluid helium at 2 K.

Optimization remarks for 4.5 K are fully applicable for 2 K option, special effort to be done for 2 K heat load or a reason of cold compressor size/capacity optimization.

Nota 1: depending on design of the cryomodule additional cool down/warm up circuit can be installed on the bottom of the helium tank.

Nota 2: all not welded sub atmospheric interfaces with external environment must be helium guarded.

Objectives of the second study phase ('21-'25)

Main deliverables and overall timeline

	2021		2022	2023	2024	2025	
Technical design work and R&D in all WPs							
Communication plan and implementation				х			
Placements studies, preferred implementation variant identification	X						
CDR design review and requirements update		Х					ne
General design update for preferred implementation variant			×			Courtesy	M. Bene
General coherence review across WPs				Х			
Detailed design for Feasibility Study Report					x		
Environmental evaluation process and impact study with Host States							
High risks areas site investigations						X	
Feasibility Study Report Completed						X	

Conclusion and perspectives

- There has been an important update of the process data since CDR was published, which impacted directly the design of the cryogenic infrastructure
- Three solutions were proposed for the update of the cryogenic infrastructure for FCC-ee configuration in point H, while in point L one solution complies with all requirements
- Organization of the cryogenic work has been consolidated in terms of structure and manpower
- Next steps:
 - Complete the update of the cryogenic design for FCC-ee
 - Address the impact of the new accelerator layout on the FCC-hh configuration
 - Start the preparation of the feasibility report

○ FCC

Thank you for your attention.

SPARES

Laurent Delprat

1. FCC-EE CONCEPTUAL DESIGN

FCC-ee conceptual design Courtesy F. Valchkova

Civil engineering

○ FCC

- Quasi-circular tunnel, diameter 5.5 m, depth \approx 300 m, tilt < 1% ۲
- Arc segments & straight sections ۲
- Circumference of 97.75 km ۲
- 12 new surface sites ۲

FCC-ee conceptual design

Main considerations

FCC

- FCC-ee is designed for <u>4 physics working points</u>:
 - Z, W, H and ttbar1 & 2
- <u>Staging of these 4 machines requires</u> a gradual increase of the number of SRF modules (as well as the accelerating frequency), hence a <u>staging of the cryogenic</u> <u>system</u>
- 400 MHz SRF cavities to be operated in LHe_(sat) bath @ 1.3 bar / 4.5 K
- 800 MHz SRF cavities to be operated in LHe_(sat) bath @ 30 mbar / 2 K

FCC-ee conceptual design

Temperature levels

FCC

- 50 75 K for the <u>thermal shield</u> as major heat intercept
- **4.5 K** normal saturated helium for the cooling of 400 MHz SRF cavities
- 2 K superfluid saturated helium for the cooling of 800 MHz SRF cavities

Steady-state heat loads in FCC-ee

	Machine									
		Z	WW		ZH			$t\overline{t}1$	$(t\overline{t}2)$	
	Per	Boost.	Per	Boost.	Per	Boost.	2	Boost.	2	Boost.
	beam		beam		beam	8	beams	0	beams	
Frequency	1	2		400	MHz				$800 \mathrm{MHz}$	
Temperature				4.	$5\mathrm{K}$				2	K
# cells / cavity	1	4		4		4		4		5
# cavities	52	12	52	52	136	136	272	136	296	400
									(372)	(480)
# cryomodules	13	3	13	13	34	34	68	34	74	100
									(93)	(120)
Dynamic	14	11	210	26	202	29	210	30	66	10
losses / cav [W]										
Static		8		8		8		8		8
losses / cav [W]	L									

(nominal conditions)

Nominal cooling capacity per cryoplant

Working point	$50-75\mathrm{K}$	$4.5\mathrm{K}$	$2\mathrm{K}$	Cryoplant size	No. of cryoplants
	(kW)	(kW)	(kW)	(kWeq @ 4.5 K)	(-)
Ζ	5.5	3.7		4	1
WW	6.4	32		33	1
ZH	7.1	41		41	2
$t\overline{t}1$	6.6	21	10	55	4
$t\overline{t}2$	7.6	21	12	 63	4

(incl. operational margin factor of 1.3)

Laurent Delprat

2. LATEST DEVELOPMENTS

Revised RF layout and heat loads for FCC-ee

General cryogenic constraints

- Maximum extractable heat load at 2 K through a QRL DN850 over a distance of 500 m is
 ≈ 12 kW per cryoplant (technical feasibility confirmed with industrial partners during phase
 1 of the study)
- 2 K pumping units shall remain as close as possible to the 800 MHz cryomodules / big impact of the cryogenic distribution length on the pressure drops in line B

Revised cooling water needs for FCC-ee

From the CDR to 2022 update

• 2019 CDR:

FCC

- <u>Underground areas</u>: 1.8 MW for point D /// 1.8 MW for point J
 - (2 * 12 kW @ 2 K installed at each point)
- <u>Surface areas</u>: 27 MW for point D /// 27 MW for point J
 - > (2 * 21.4 kW @ 4.5 K installed at each point)
- 2022 update:
 - <u>Underground areas</u>: 1.8 MW for point L /// 1.8 MW for point H
 - (2 * 11 kW @ 2 K installed at each point)
 - <u>Surface areas</u>: 95 MW for point L /// 48 MW for point H
 - ➤ (2 * 75 kW @ 4.5 K installed at point L, ...
 - … and 2 * 38 kW @ 4.5 K installed at point H)

Most time consuming losses

5561 hours per year (⇔ 232 days)

Cryogenic availability for FCC-hh

2022-06-02 / FCC Week 2022

FCC

80%

2010

2011

2012

2015

2016

2017

2018

statistics are refering to this period

Cryogenic availability for FCC-hh, update from CDR

- From 12 to 8 surface access sites
- From 97.75 km to 91.17 km of circumference
- Sectors length increased from 10 km to 11.4 km (-hh configuration)
- Challenges:

FCC

- Distribution length increase by $\approx 10\%$
- CDR: capacity of one 10-km-long sector cryogenic plant equivalent to ≈ 110 kW @ 4.5 K
- Need to <u>assess</u> the possibility to go for a "LHC-like" configuration with <u>only 8 cryoplants</u> in 4 technical sites

Impact on Cryogenic Availability !

3. CRYOGENICS WORK ORGANIZATION

Organization of the cryogenics work

<mark>6 pillars</mark>

FCC Study Phase II Organization & Cryogenics Group involvement

- <u>Technical Infrastructures</u>:
 - L. Delprat

FCC

- <u>Technology R&D</u>:
 - <u>Cavities</u>:
 - K. Brodzinski, L. Delprat
 - <u>Magnets</u>:
 - R. Van Weelderen, P. Tavares
- <u>Detectors concepts</u>:
 - J. Bremer, C. Fabre

		Study 0	Coordination	*	*
Physics and experiments P. Janot NN	Accelerators ?? T. Raubenheimer (SLAC)?? F. Zimmermann (<mid 22)<br="">J. Wenninger (>mid22)</mid>	Techn. coordination techn. Infrastructure K. Hanke (from 7/21) V. Mertens (till 7/21)	Host State processes and civil engineering LD Opened	Organisation and financing models NN	Study support and coordination M. Benedikt
physics programme NN	ee & FEB design K. Oide (KEK) A. Chance (CEA)	electrical infrastructure JP. Burnet	administrative processes F. Eder (>9/21)	organisation model <mark>NN</mark>	study/collaboration secretariat J. Hadre
detector concepts NN	hh design	cooling & ventilation G. Peon	placement studies V. Mertens (<12/21)	financing model F. Sonnemann	study support unit NN
physics performance P. Azzi (INFN) E. Perez	technology R&D R. Losito	integration, transport, logistic C. Colloca	environmental evaluation <mark>NN</mark>	procurement strategy and rules NN	EU projects NN
software and computing G. Ganis C. Helsens (<10.21)	ee MDI M. Boscolo (INFN)	general safety, access radiation protection, T. Otto	tunnel, subsurface design J. Osborne	in-kind contributions <mark>NN</mark>	collaboration building E. Tsesmelis
	ee injector P. Craievich (PSI)	Cryogenics, geodesy survey, computing infrastructure, operation and maintenance- reliability	surface buildings design <mark>NN</mark>	operation model P. Collier	Communications P. Charitos J. Gillies (local comm)
		See WBS of K. Hanke	landplots and access NN		nedikt
				surtesy	M. Bene

Organization of the cryogenics work

Technical Infrastructures Working Group (TIWG)

- Chaired by Klaus Hanke (CERN / ATS-DO)
- 10 different work packages (WP)
- Cryogenics systems: WP4.6

FCC 4.1 - Technical Infrastructure	K. Hanke
FCC 4.2 - Integration, installation concepts	J.P. Corso
	H. Mainaud
FCC 4.3 - Geodesy & survey	Durand
FCC 4.4 - Electricity and energy management	J.P. Burnet
FCC 4.5 - Cooling and ventilation	G. Peon
FCC 4.6 - Cryogenics systems	L. Delprat
FCC 4.7 - Computing and controls infrastructure,	D.
communication and network	Duellmann
FCC 4.8 - Safety	T. Otto
FCC 4.9 - Operation, maintenance, availability, reliability	J. Nielsen
FCC 4.10 - Transport	C. Colloca

In	Technical frastructures Klaus Hanke
1	ntegration, installation
l	Jean-Pierre Corso
1	Geodesy & survey
ł	Hélène Mainaud Durand
	Electricity and energy management
	Jean-Paul Burnet
0	Cooling and ventilation
	Guillermo Peon
1	Cryogenics systems
	Laurent Delprat
in	Computing and controls frastructure, communication and network
	Dirk Duellmann
1	Safety
	Thomas Otto
0	peration, maintenance, availability, reliability
L	Jesper Nielsen
ſ	Transport
1	Cristiana Colloca

WP4.6 Structure

