#### TRANSPORT REQUIREMENTS

gratefully acknowledging the contributions of J. Bauche, J. Osborne, T. Otto and FIML

#### Table of contents

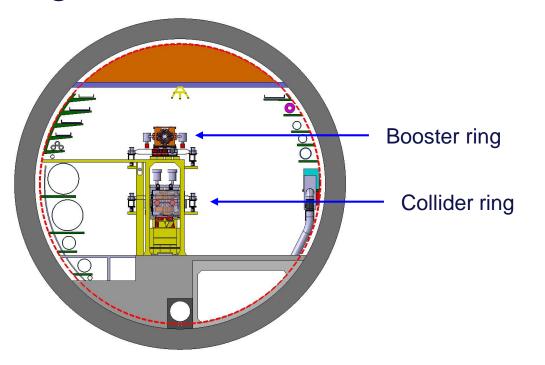
- Requirements for underground transport and handling of magnets
- Requirements for underground transport of people
- Boundary conditions
- Open points

### Requirements for underground transport and handling of magnets<sup>1</sup>

Manufacturing-> Transport to FCC sites -> Storage



#### Lowering -> Underground transport




Unloading



○ FCC

#### Requirements for underground transport and handling of magnets



### Requirements for underground transport and handling of magnets

Collider ring

FCC

| Туре        | Dipoles | Quadrupoles Sextupole |      |
|-------------|---------|-----------------------|------|
| Number      | 5800    | 2900                  | 3560 |
| Length [cm] | 1200    | 340                   | 170  |
| Width [cm]  | 45      | 60                    | 30   |
| Height [cm] | 30      | 70                    | 50   |
| Weight [kg] | 3700    | 5500                  | 600  |

## Requirements for underground transport and handling of magnets

Collider ring

FCC

| Unit        | Q-S  | Q-S-S |
|-------------|------|-------|
| Length [cm] | 520  | 700   |
| Width [cm]  | 60   | 60    |
| Height [cm] | 100  | 100   |
| Weight [kg] | 6620 | 7400  |

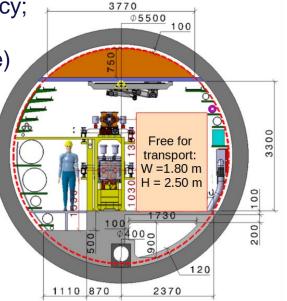
Magnets will be installed as follows:

- 5800 single dipoles
- **492** single quadrupoles
- 1256 units made up of quadrupole-sextupole and supporting girder (Q-S)
- 1152 units made up of quadrupole-sextupole-sextupole and supporting girder (Q-S-S)

### Requirements for underground transport and handling of magnets

Booster ring

FCC


| Туре        | Dipoles | Quadrupoles | Sextupoles |  |
|-------------|---------|-------------|------------|--|
| Number      | 5888    | 2944        | Unknown    |  |
| Length [cm] | 1140    | 170         | 70         |  |
| Width [cm]  | 30      | 50          | 30         |  |
| Height [cm] | 30      | 70          | 50         |  |
| Weight [kg] | 2500    | 2000        | 200        |  |

### Requirements for underground transport and handling of magnets

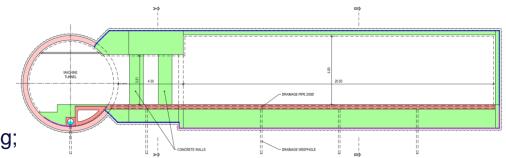
- Data about collider ring have been defined based on existing design;
- Data about booster ring have been derived by scaling the collider ones;
- No specific requirements concerning the max allowed acceleration and tilt angle;
- Max tunnel slope: 0.5%

### Requirements for underground transport of people 1/2

- Vehicle shall be used to transport personnel with material and evacuate them in case of emergency;
- Minimum capacity: 6 people 500 kg (possibly a bit more) Materials payload: 1000 kg Total capacity: 1500 – 2000 kg
- Max speed: 30 km/h (lower for material);
- Battery powered;

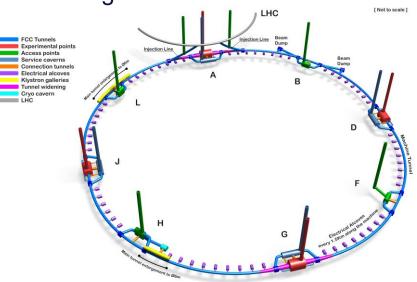


#### Requirements for underground transport of people 2/2


- Possibility for autonomous drive to be investigated;
- Vehicles connected between them and/or with a centralized system;
- Modular design allowing the mounting of different platforms;
- Hosting equipment for autonomous
   or remote interventions (minimise human access to the tunnel).

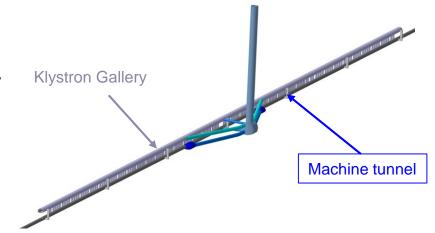
#### **Boundary conditions**

Vehicle design shall take into account the interaction with the surrounding environment, in particular:


- Vehicle-vehicle crossing (especially for people vehicle)
  - -> if this shall be possible anywhere, a rail-bound system is not possible;
- Vehicle-people crossing;
- Presence of alcoves;
- Dedicated areas for vehicles parking;
- Passage through fire protection doors in fire partitions.






#### Open points 1/2

- Same vehicle for all types of magnets?
- Number of shafts dedicated to magnets' handling
- Magnets design:
  - Connection design;
  - Installation procedure and time;
  - Number of support points.



Open points 2/2

- Number of people/sector present at each stage (installation of the machine, operation i.e. technical stops, dismantling)
- Installation schedule and sequence of magnets, technical services and fire protection doors
- Information about components to be installed in the klystron gallery



#### Open points per phase

|                                                                                                                                           | Installation | Operation<br>(technical<br>stops) | Dismantling |
|-------------------------------------------------------------------------------------------------------------------------------------------|--------------|-----------------------------------|-------------|
| Different types of vehicles                                                                                                               | х            | х                                 | х           |
| Number of shafts for magnets' handling                                                                                                    | х            |                                   | x           |
| <ul> <li>Magnets design:</li> <li>Connection design</li> <li>Installation procedure and time</li> <li>Number of support points</li> </ul> | х            | х                                 |             |
| Number of people/sector                                                                                                                   | х            | х                                 | х           |
| Installation schedule and sequence of magnets, technical services and fire protection doors                                               | х            |                                   | x           |
| Information about components to be installed in the klystron gallery                                                                      | х            |                                   | x           |

# Thank you for your attention.