

Recent Advances on the FCC-ee Electron Cloud Build-up Studies

Fatih Yaman, Izmir Institute of Technology (IYTE) Frank Zimmermann, CERN

Many Thanks: Giovanni Iadarola, Roberto Kersevan, Salim Ogur, Kazuhito Ohmi and Mikhail Zobov

Acknowledgments: the FCC-ee optics team

May 31, 2022

Outline

- FCC-ee machine & beam parameters for the simulations
- Overview of SEY Models & Simulation Tools
- FCC-ee Collider Arc Dipole (4IPs) Build-up Results
- Preliminary Wakefield Results
- Conclusions & Future Plans

FCC-ee Collider Arc Dipole Parameters

Parameters	2 IPs	4 IPs
beam energy [GeV]	45.6	45.6
bunches per train	150	150
trains per beam	1	1
circular beam pipe radius [mm]	35	35
r.m.s. bunch length (σz) [mm]	3.5	4.32
h. r.m.s. beam size (σx) [μm]	120	207
v. r.m.s. beam size (σ _y) [μm]	7	12.1
number of particles / bunch (10 ¹¹)	1.7	2.76
bend field [T]	0.01415	0.01415
circumference C [m]	97.76	91.2
synchrotron tune Qs	0.025	0.037
average beta function $\boldsymbol{\beta}_{y}$ [m]	50	50
threshold density (10¹² [m - ³])	0.027	0.043

threshold density (single-bunch instability)
$\rho_{\rm thr} = \frac{2\gamma Q_s \omega_e \sigma_z / c}{\sqrt{3} K Q r_e \beta_y C}$
$\omega_e = \left(\frac{N_b r_e c^2}{\sqrt{2\pi}\sigma_z \sigma_y (\sigma_x + \sigma_y)}\right)^{1/2}$
$K = \omega_e \sigma_z / c$
$Q = \min(\omega_e \sigma_z/c, 7)$

K. Ohmi, Beam-beam and electron cloud effects in CEPC / FCC-ee, Int. Journal of Modern Physics A, 31(33), 1644014 (2016).

- K. Ohmi, F. Zimmermann and E. Perevedentsev, Wakefield and fast head-tail instability caused by an electron cloud, Phys. Rev. E 65, 016502 (2001).
- F.Yaman, G.Iadarola, R. Kersevan, S. Ogur, K. Ohmi, F. Zimmermann and M. Zobov, Mitigation of Electron Cloud Effects in the FCC-ee Collider, arXiv:2203.04872, (2022).

PE generation rate {1e-3, 1e-4, 1e-5, 1e-6} m⁻¹

fine structure constant

$$\alpha \approx 1/137$$

the Lorentz factor

 $\gamma \approx 10^5$

radius of curvature of the particle path

```
\rho \approx 11000 \, [m]
```

Furman-Pivi & ECLOUD SEY Models

Simulation Tools: PyECLOUD, CST

PyECLOUD

- 2D Electrostatic PIC simulation
- effects of space charge and secondary electrons are included
- adaptive scheme to control the number of electrons per macro particle during the simulation
- ECLOUD and Furman-Pivi SEY models

G. ladarola, "Electron cloud studies for CERN particle accelerators and simulation code development" PhD Thesis, U. Naples, CERN-THESIS-2014-047, (2014).

N.Hilleretetal., "Secondary electron emission data for the simulation of electron cloud", Proc. of ECLOUD'02, Geneva, Switzerland, CERN-2002-001, (2002).

CST-PS

- 3D Electromagnetic PIC simulation
- effects of space charge and secondary electrons are included
- Furman-Pivi SEY model
- Photoemission mechanism is not included in this work

with the courtesy of G. ladarola

Center e⁻ density, min. max. values

Average of minimum's for center electron density

Average of min. for center e⁻ density, FCCee Collider Drift

Average of min. for center e⁻ density, FCCee Collider Arc Dipole

Electron Cloud Build-up Simulations with CST-PS

Wakefield computations with CST: RF Cavity Analogy

a typical RF Cavity example

F. Yaman, E.Gjonaj, Th. Weiland, '3D EM PIC code to study e-Cloud effects for short bunches (<50ns)', CERN - GSI Electron Cloud Workshop 2011, Geneve,Switzerland, 2011 https://indico.cern.ch/event/125315/contributions/96596/

œ≡

K. Ohmi, F. Zimmermann, and E. Perevedentsev, 'Wake-field and fast head-tail instability caused by an electron cloud, ' Phys. Rev. E 65, 016502 – Published 17 December 2001

-m/s

2.4e+08 2e+08 1.6e+08 1.2e+08 8e+07 4e+07

 position
 monitor 1
 △

 Output
 Velocity

 Sample
 706/2349

 Time
 0.300072 ns

 Particles
 308518

 Maximum (Sample)
 2.99792e+08 m/s

 Maximum (Global)
 2.99792e+08 m/s

Wakefield computations with CST-PS

Longitudinal Component of the Electric Field

position monitor 1 c Output Velocity Sample 1/2349 Time 0 ns Particles 0 Maximum (Global) 2.99792e+08 m/s

13

2 -

Longitudinal Wakefield (in progress)

a typical RF Cavity example result

$$W_{||}(r,s) = \frac{1}{Q} \int_{-\infty}^{\infty} dz \, E_z(r,z,t) \Big|_{(r=0,\,t=s+z/v)}$$

Preliminary Result !

Conclusions and Future Plans

- 4IPs parameters + (30ns, 32ns) bunch spacing relax Ecloud build up
- Max. center electron density = 1.75e13 m⁻³ (bunch spacing: 30 ns, Furman-Pivi SEY, SEY=1.4 , n'_{γ} =1e-3, DRIFT region)
- Min. center electron density = 6e8 m⁻³ (bunch spacing: 32 ns, ECLOUD SEY , SEY=1.1 , n'_{γ} =1e-6, DIPOLE region)
- Simulations are performed in the realistic photon flux regimes
- Preliminary Ecloud build up comparisons with 2D and 3D codes
- Verification of Wakefield calculations, Impedance calculations
- Simulations with the measured SEY data

THANK YOU FOR ATTENTION!

