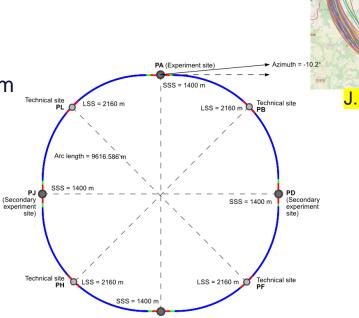


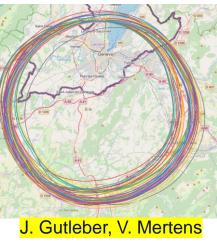
M. Hofer Many thanks to K. Oide, T. Raubenheimer, D. Shatilov, R. Tomás, F. Zimmermann, and all colleagues from the FCC-ee collaboration

) FCC

FCCIS – The Future Circular Collider Innovation Study. This INFRADEV Research and Innovation Action project receives funding from the European Union's H2020 Framework Programme under grant agreement no. 951754

Introduction

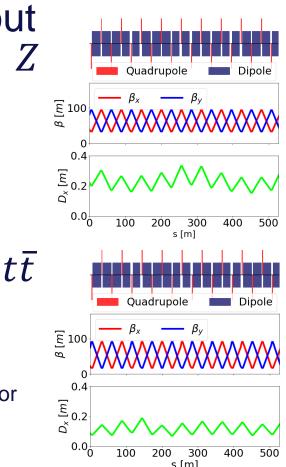

- FCC-ee poses several challenges for the optics design
 - Delivering record luminosities at four different center of mass energies with minimal changes between operation modes
 - Beam line to follow the tunnel layout for the FCC-hh
 - Double ring collider, tapering, $E_{critical}$ below 100 keV for the last dipoles upstream of IP, top-up injection, record stored beam energy for lepton collider, crab waist scheme, ...
- The general feasibility of such a machine has been demonstrated in the CDR
 - Based on a tunnel with a circumference of 97 km and with two experiments
- Continued studies in many areas since the publications of the CDR
 - In this talk, summary of new baseline layout with changes to follow recent developments


Placement Studies & new tunnel baseline

- Following the CDR, continued studies to optimize the placement of ring
 - Many factors to consider: Geology, Infrastructure, Access tunnels, Periodicity, …
- New baseline tunnel layout PA31-1.0
 - Decrease in circumference to 91 km
 - Four-fold periodicity

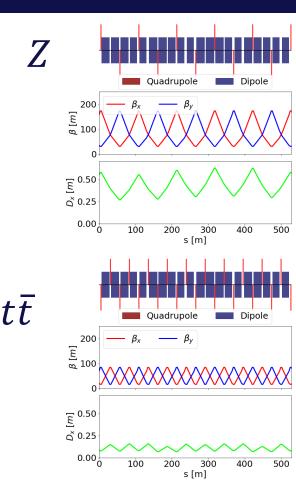
FCC

 Small adjustments foreseen to facilitate injection into FCC-hh


Arc cell considerations & CDR layout

• FODO cell is used in the arcs due to high packing factor

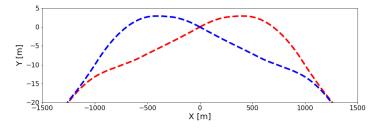
FCC


In CDR, cell length of ~50m and arc cell phase advance of 60°/60° for Z and W operation, and 90°/90° for H and tt operation

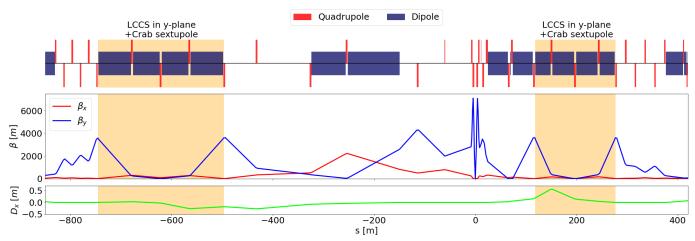
- For mitigation of collective instabilities, large momentum compaction at Z and W required
 - For luminosity, preference is to have arc cell phase advance of $45^{\circ}/45^{\circ}$ for Z, $60^{\circ}/60^{\circ}$ for W, and $90^{\circ}/90^{\circ}$ for H and $t\bar{t}$
 - Optics for Z with 45°/45° phase advance is problematic for sextupole

Arc optics in new layout

- New baseline layout now implements variable arc cell length
 - For Z and W, cell length of ~100m and phase advance of 90°/90° used
 - By installing quadrupoles in the gaps between dipoles, the cell length for H and $t\bar{t}$ is reduced back to 50m, using again 90°/90° phase advance to achieve small ϵ_x
 - Modification of arc cell to include correctors, BPMs, gaps between elements are investigated (see talk by L. van Riesen-Haupt)



Experimental IR


- Experimental IR straight section layout remains as presented in the CDR
 - Focus lies on a 4-IP configuration
 - Minor changes:

∩ FCC

 Reduction of β^{*}_x to 10cm to suppress coherent beam-beam instability (D. Shatilov, Y. Zhang, M. Zobov)

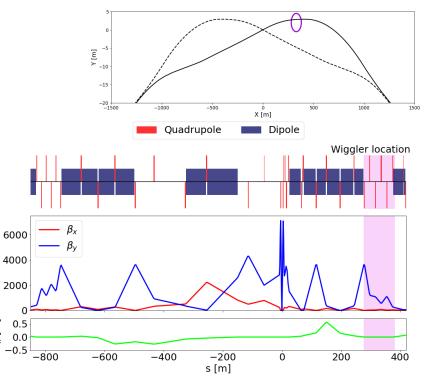
Modifications of length of drift spaces to install polarisation wigglers

Operation mode	β _x [mm]	β _y [mm]	
Z	100	0.8	
W	200	1	
Н	300	1	
$t\bar{t}$	1000	1.6	

Parameters

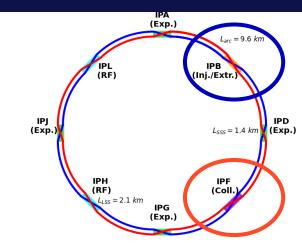
- New optics and parameter on the <u>FCC-ee optics repo</u> in the V22 branch
- Parameters adjusted for lower circumference and new arc optics
 - Results in a slight decrease of luminosity per IP
 - Luminosity numbers based on simple model, to be refined with simulations

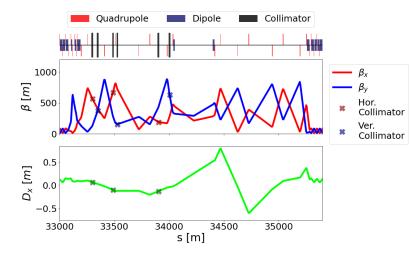
Operation mode	Z (45.6 GeV)		<i>t</i> ī (182.5 GeV)	
	V22.2	CDR	V22.2	CDR
Circumference [km]	91.17	97.75	91.17	97.75
Bending radius of main dipoles [km]	9.937	10.76	9.937	10.76
Energy loss/turn [GeV]	0.0391	0.036	10.0	9.2
Bunches/beam	10000	16640	40	48
Bunch population [10 ¹¹]	2.43	1.7	2.37	2.3
Hor. Emittance [nm]	0.71	0.27	1.49	1.46
Ver. Emittance [pm]	1.42	1.0	2.98	2.9
β_x^*/β_y^* [mm]	100/0.8	150/0.8	1000/1.6	1000/1.6
Luminosity/IP $[10^{34}cm^{-2}s^{-1}]$	182	230	1.24	1.5


Reference

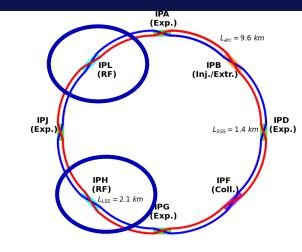
Lattice modifications

FCC


- For energy calibration runs at Z and W, two critical systems:
 - Wiggler to reduce the polarization time
 - Polarimeter to measure polarization based on spin-dependent Compton scattering
- Integration into new baseline layout ongoing (see talk by K. Oide)
 - Wiggler installed downstream of the experimental straight
 - Two locations for polarimeter under study:
 - Upstream of either
 an RF insertion or experimental insertion [™]₂₀₀₀


D_x [m]

Integration of auxiliary insertions


- In 4-IP layout, beam crossing in every straight section required
- First design of a collimation insertion under study (see talk by A. Abramov)
 - Betatron and momentum collimation in point F
- Top-up injection and extraction potentially located in point B
 - Studies on top-up injection currently ongoing, using CDR type lattice for now (see talk by P. Hunchak)
 - Layout to be adapted to 4-IP

RF insertions

- After preliminary survey of surface sites, recommendation is to place RF in points H and L (see presentation by K. Hanke)
 - In case of 2-IP, straight sections D and J also feasible
- To reduce the uncertainty on center-of-mass energy, RF located in a single place for Z and W operation
- In $t\bar{t}$ operation, RF cavities distributed between points H and L
 - Different RF settings and their impact on center-of-mass energies under study (see talk by J. Keintzel)

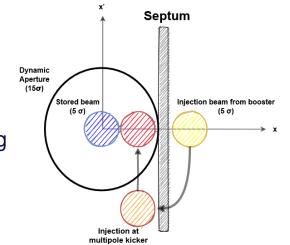

RF insertions II

○ FCC

- RF insertion layout similar to CDR ٠
 - Drift Space for cavities extended to 52 m •

Ζ

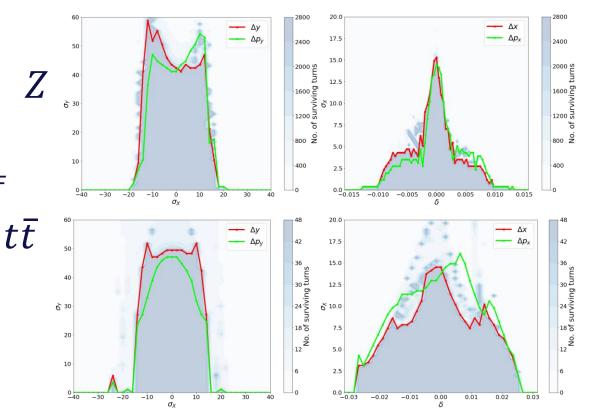
- At Z and W, separate RF for ٠ each beam
 - Beam crossing in ٠ the middle of the insertion
- Common RF for ٠ H and $t\bar{t}$ operation modes



Sextupoles and DA optimization

- Chromaticity correction by families of non-interleaved sextupole pairs, with –I transform between sextupoles
 - All 75(Z) / 146 ($t\bar{t}$) sextupole pair used in dynamic aperture optimization Impact of reducing number of sextupole families under study

• For on-momentum top-up injection, a dynamic aperture of more than 15σ is required


- For off-momentum injection, DA > 5σ for chosen setting of ${}^{\Delta p}/{}_{p}$
- Target for momentum acceptance based on beam lifetime in the presence of large energy spread due to beamstrahlung
 - For $t\bar{t}$, requirement is $\delta_{acceptance} > 2.8\%$, while for Z, threshold $\delta_{acceptance} > 1.3\%$

Sextupoles and DA optimization

 Sufficient dynamic aperture and momentum acceptance is found

- Impact of reduction to $\beta_x^* = 10 \ cm$ at Z and asymmetric placement of RF on DA small
- Achievable performance in presence of misalignments to be studied

Conclusions and next steps

• New tunnel layout since the last FCC-week

- Reduced circumference leads to a slight decrease in luminosity performance
- Following 4-fold periodicity, most studies focus on 4-IP lattice
- Numerous changes in beam optics for new layout
 - Different arc cell length between Z/W and H/ $t\bar{t}$, wiggler and polarimeter space, redesign of RF sections, ...
- Next steps include integration of auxiliary system such as collimation and injection insertions into lattice

Thanks for your attention!