

# FUTURE CIRCULAR COLLIDER



# Bunch length measurement studies using Cherenkov Diffraction radiation

gratefully acknowledging:

Michael Benedikt, Candy Capelli, Nicolas Sebastien Chritin, Ashley Churchman, Can Davut, Wilfrid Farabolini, Daniel Harryman, Pavel Karataev, Pierre Korysko, Kacper Lasocha, Thibaut Lefevre, Stefano Mazzoni, Collette Pakuza, Eugenio Senes

> This project has received funding from the European Union's Horizon 2020 research and innovation programme under the European Union's Horizon 2020 research and innovation programme under grant agreement No 951754



### 

# Table of contents

FCC-ee bunch length diagnostics

**Cherenkov Diffraction Radiation (ChDR)** 

### **Analytical Models**

FCC

incoherent ChDR

### **Numerical Models**

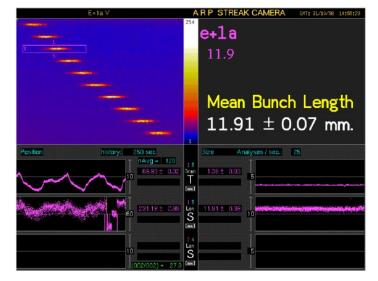
coherent ChDR

### **Upcoming Experiments**



# FCC-ee bunch length diagnostics

### Synchrotron radiation (SR) in LEP


Bunch length measurements using SR on streak camera

### SR in FCC-ee:

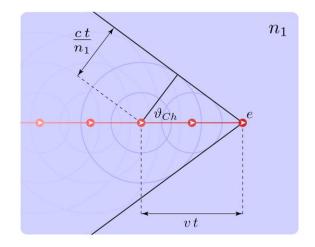
Distance of ~100m necessary to separate the photon beam from the electron or positron beam<sup>1</sup> and X-rays dominating the spectrum

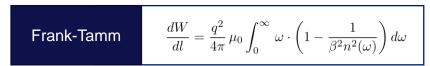
# Cherenkov Diffraction Radiation (ChDR) at FCC-ee

- Non-invasive
- · Simple geometries with small space requirements
- Photon emission at large and well-defined angle



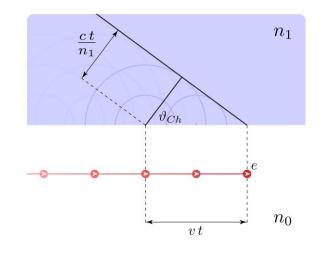
#### Bunch length measurement in LEP<sup>2</sup>


<sup>1</sup> Abada, A., Abbrescia, M., AbdusSalam, S.S. et al. FCC-ee: The Lepton Collider. Eur. Phys. J. Spec. Top. 228, 261–623 (2019). https://doi.org/10.1140/epjst/e2019-900045-4


<sup>2</sup> A. J. Burns, H. Schmickler, Bunch length measurements in LEP, Proceedings DIPAC (1999) https://cds.cern.ch/record/398768

# Cherenkov (Diffraction) Radiation

#### **Cherenkov Radiation**

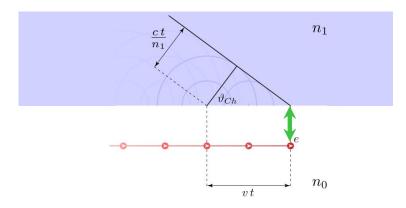

FCC



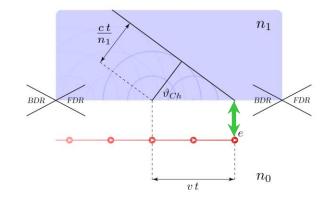


<sup>2</sup> I.M. Frank and I.E. Tamm. Coherent visible radiation of fast electrons passing through matter. Compt. Rend. Acad. Sci. URSS, 14(3):109–114, 1937

#### **Cherenkov Diffraction Radiation (ChDR)**




Two analytical models


# **Analytical Models**

#### Stationary Model <sup>(1,2)</sup>

FCC



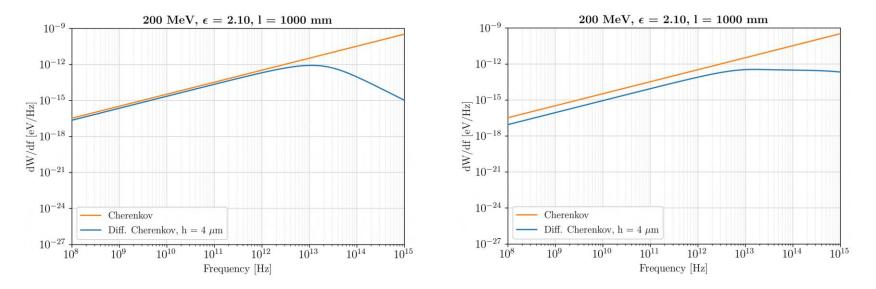
### Non-Stationary Model (3,4)



Electrons moving parallel to the boundary of **infinite** length radiators

Electrons moving parallel to the boundary of **finite** length radiator

h ... Impact Parameter E ... Particle Energy


<sup>1</sup> B.M. Bolotovskii, Sov. Phys. Usp. 4 781 (1962) <sup>2</sup> Ulrich, R. Zur Cerenkov-Strahlung von Elektronen dicht über einem Dielektrikum. Z. Physik 194, 180–192 (1966). https://doi.org/10.1007/BF01326045 <sup>3</sup> Karlovets, D.V., Potylitsyn, A.P. Diffraction radiation from a finite-conductivity screen. Jetp Lett. 90, 326 (2009). https://doi.org/10.1134/S0021364009170032 <sup>4</sup> Konkov, A.S., Potylitsyn, A.P., Shevelev, M.V. et al. On the polarization characteristics of Cherenkov radiation from a dielectric screen. Jetp Lett. 105, 227–231 (2017). https://doi.org/10.1134/S002136400917040105

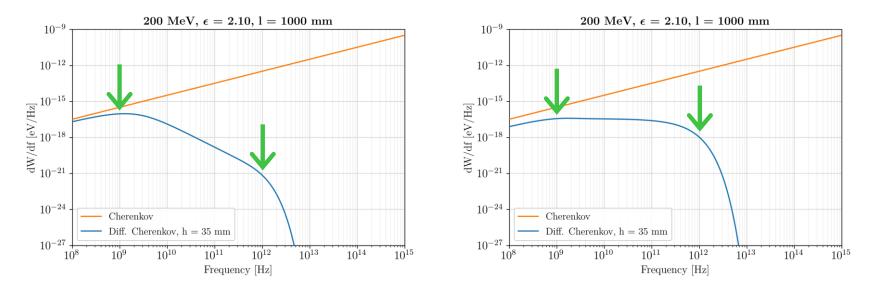
**Non-Stationary Model** 

### Impact parameter h

#### **Stationary Model**

FCC




Fixed particle energy, only distance between particle and radiator is increased

### Impact parameter h

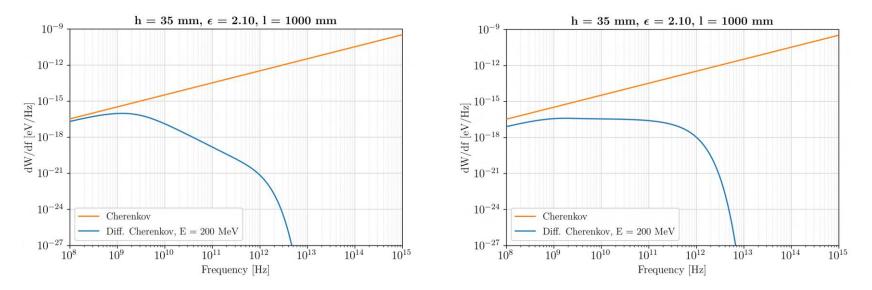
 $\propto 1/h$ 

#### **Stationary Model**

FCC



turning points show the same behavior in both models


**Non-Stationary Model** 

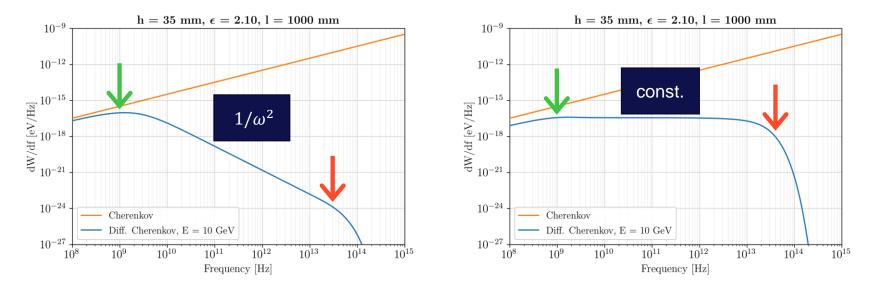
**Non-Stationary Model** 

# Energy E

#### **Stationary Model**

○ FCC




Fixed distance, only particle energy is increased

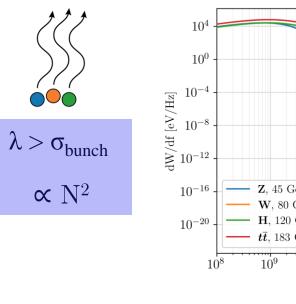


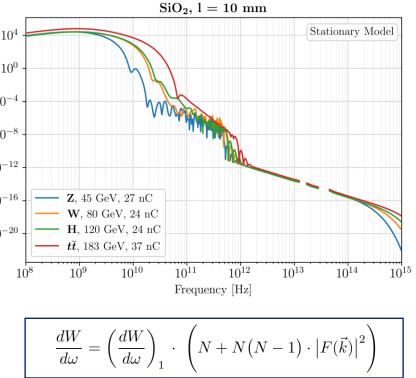
# Energy E

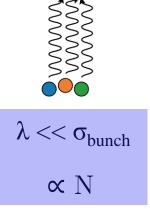
#### **Stationary Model**

○ FCC




#### **Non-Stationary Model**


 $\propto 1/h$   $\propto \gamma/h$ 

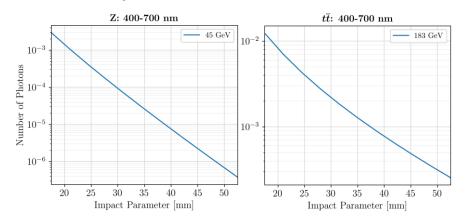

turning points show the same behavior in both models

○ FCC

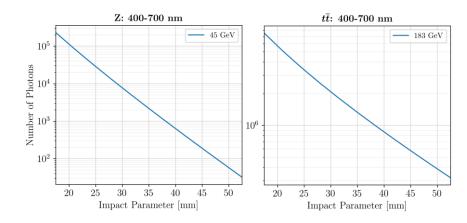
### **Coherent and Incoherent ChDR**








|                                     | $F(\vec{k}) = \int S(\vec{r}) \cdot e^{-i\vec{k}\cdot\vec{r}} d\vec{r}$ |
|-------------------------------------|-------------------------------------------------------------------------|
| $F(\vec{k})$                        | bunch form factor                                                       |
|                                     | particle density distribution                                           |
| $\left(\frac{dW}{d\omega}\right)_1$ | energy spectrum<br>of one particle                                      |


## Incoherent ChDR

#### **Stationary Model**

○ FCC

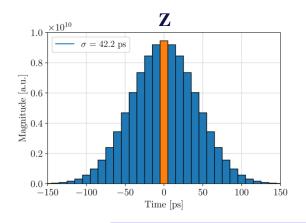


#### **Non-Stationary Model**



≈ 10<sup>-5</sup>-10<sup>-3</sup> photons per bunch at nominal distance

Ways to increase  $\rightarrow$  moving closer + integrating


≈ 10<sup>3</sup>-10<sup>6</sup> photons per bunch at nominal distance



### Incoherent ChDR for Longitudinal profile measurement

#### **Stationary Model**

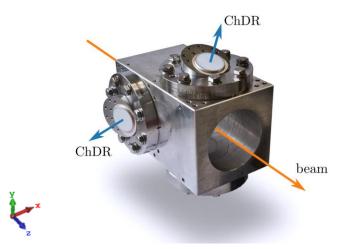
FCC



| Inte             | egrated no. of photons for          | Photons/bunch |      |        |
|------------------|-------------------------------------|---------------|------|--------|
| Impact parameter |                                     | 15 mm         | 5 mm | @ 5 mm |
| z                | Max. photons/(bunch $\cdot$ minute) | 1.47          | 78.4 | 0.45   |
| W                | Max. photons/(bunch $\cdot$ minute) | 4.52          | 155  | 0.42   |
| н                | Max. photons/(bunch $\cdot$ minute) | 5.94          | 179  | 0.43   |
| tī               | Max. photons/(bunch $\cdot$ minute) | 20.5          | 583  | 0.67   |
|                  |                                     |               |      |        |

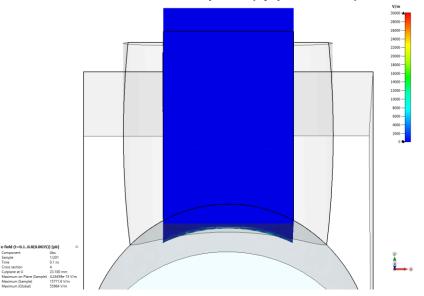
### $\rightarrow$ Need for ultra-high energy particles to test analytical models

Currently investigating possible tests in SPS North Area


- 40-300 GeV electrons
- up to 10<sup>7</sup> particles per spill

○ FCC




### Coherent ChDR

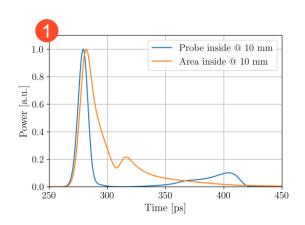
### ChDR radiators to be tested at CLEAR



- 36 mm diameter Alumina rods
- brazed to DN 60 flange, vacuum tight
- curvature for Ø 80 mm beam pipe








○ FCC



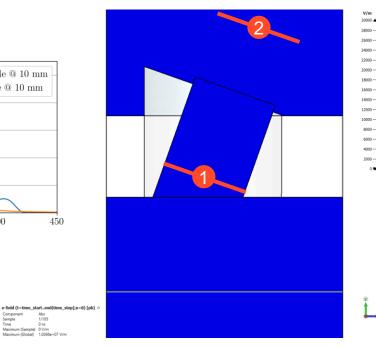
# **Coherent ChDR**

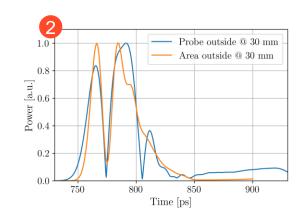
### Numerical studies with CST



Abs

1/105


0 ns


Component

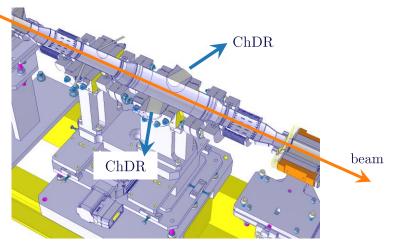
Maximum (Sample) 0 V/m Maximum (Global) 10366e+07 V/n

ample

#### E-field, Median plane (yz-plane)






Electron bunch 5 ps Gaussian, 300 pC, 200 MeV



# Upcoming experiment

### **Coherent ChDR experiments at CLEAR**

- Coherent ChDR can be tested at low energies
  - CLEAR facility at CERN typically provides 1-5 ps electron bunches with energies up to 220 MeV
  - measure transfer function and benchmark simulations in the low frequency part of the spectrum
- Vacuum chamber with ChDR inlets to be expected during June
  - foreseen installation during summer shut down of CLEAR
- Electro-optical probing
  - Transverse and longitudinal electric field modulus and polarization



Beam line integration at CLEAR



EO-probe by Kapteos (www.kapteos.com)

FCC

# Summary

FCC

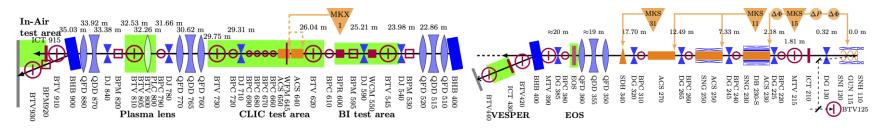
### ChDR possible candidate for bunch length diagnostics at FCC

### **Incoherent ChDR**

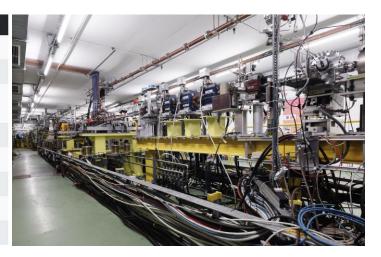
- ultra-high energy particles needed for validation of incoherent ChDR
- investigating possible testing at SPS North Area

### **Coherent ChDR**

- CLEAR provides suitable parameters to test with short bunches at low energies
- all vacuum components ready for installation in the coming weeks
- · experiments scheduled after summer


→ Experimental validation/benchmarking of different models necessary

# Thank you for your attention.


○ FCC

CLEAR

○ FCC



| Beam parameter (end of linac)    | Value range                                                               |
|----------------------------------|---------------------------------------------------------------------------|
| Energy                           | 60 - 220 MeV                                                              |
| Bunch charge                     | 0.01 - 0.5 nC                                                             |
| Normalized emittances            | 3 um for 0.05 nC per bunch<br>20 um for 0.4 nC per bunch (in both planes) |
| Bunch length                     | ~100 um -1.2 mm                                                           |
| Relative energy spread           | < 0.2 % rms (< 1 MeV FWHM)                                                |
| Repetition rate                  | 1 - 5 Hz (25 Hz with upgrade)                                             |
| Number of micro-bunches in train | 1 and more than 100                                                       |
| Micro-bunch spacing              | 1.5 GHz                                                                   |

