FCC-hh layout and optics studies

Massimo Giovannozzi and Thys Risselada CERN, BE Department FCC Week 2022, 1 June 2022

JTURE

E-JADE

Work supported by the **European Commission** under the **HORIZON 2020 projects EuroCirCol**, grant agreement 654305; **EASITrain**, grant agreement no. 764879; **ARIES**, grant agreement 730871, **FCCIS**, grant agreement 951754, and **E-JADE**, contract no. 645479

ARIES

SPS

EASITrain

Eur CirCol

LHC

photo: J. Wenninger

http://cern.ch/fcc

Outline

- The CDR baseline
- Layout and optics of new FCC-hh ring
- Progress with combined function lattice
- Outlook

PARIS, France Venue: Campus des Cordeliers Sorbonne Université https://cern.ch/fccweek2022

Acknowledgements: A. Abramov, W. Bartmann, M. Benedikt, K. Brodzinski, L. Bromiley, R. Bruce, L. Delprat, J. Gutleber, R. Lopez, V. Mertens, J. Osborne, G. Perez Segurana, T. Raubenheimer, S. Redaelli, E. Todesco, F. Valchkova-Georgieva, B. Weyer, F. Zimmermann

FUTURE CIRCULAR COLLIDER

PARIS

30 May - 03 June

WEEK

2022

Future Circular Collider Study launched in 2014

- international FCC collaboration (CERN as host lab) to study:
- *pp*-collider (*FCC-hh*)
 → defining infrastructure requirements
- ~16 T \Rightarrow 100 TeV *pp* in 100 km
- 80-100 km infrastructure in Geneva area
- e⁺e⁻ collider (FCC-ee) as a possible first step
- *p-e* (*FCC-he*) option, HE LHC …

CIRCULAR FCC CDR and Study Documentation

- FCC-Conceptual Design Reports (completed in 2018):
 - Vol 1 Physics, Vol 2 FCC-ee, Vol 3 FCC-hh, Vol 4 HE-LHC
 - CDRs published in European Physical Journal C (Vol 1) and ST (Vol 2 – 4)

EPJ C 79, 6 (2019) 474 , EPJ ST 228, 2 (2019) 261-623 , EPJ ST 228, 4 (2019) 755-1107 , EPJ ST 228, 5 (2019) 1109-1382

Summary documents provided to EPPSU SG

- FCC-integral, FCC-ee, FCC-hh, HE-LHC
- Accessible on <u>http://fcc-cdr.web.cern.ch/</u>

FUTURE CIRCULAR COLLIDER FCC-hh (pp) collider parameters

parameter	FCC-hh		HL-LHC	LHC
collision energy cms [TeV]	100		14	14
dipole field [T]	16		8.33	8.33
circumference [km]	97.75		26.7	26.7
beam current [A]	0.5		1.1	0.58
bunch intensity [10 ¹¹]	1	1	2.2	1.15
bunch spacing [ns]	25	25	25	25
synchr. rad. power / ring [kW]	2400		7.3	3.6
SR power / length [W/m/ap.]	28.4		0.33	0.17
long. emit. damping time [h]	0.54		12.9	12.9
beta* [m]	1.1	0.3	0.15 (min.)	0.55
normalized emittance [µm]	2.2		2.5	3.75
peak luminosity [10 ³⁴ cm ⁻² s ⁻¹]	5	30	5 (lev.)	1
events/bunch crossing	170	1000	132	27
stored energy/beam [GJ]	8.4		0.7	0.36

FCC-hh layout

- Two high-luminosity experiments (A & G)
- Two other experiments combined with injection (L & B)
- Two collimation insertions
 - betatron cleaning (J)
 - momentum cleaning (F)
- Extraction insertion (D)
- Clean insertion with RF (H)
- Compatible with LHC or SPS as injector

circumference: 97.75 km

FCC consistent machine layouts

FCC-hh

FUTURE CIRCULAR COLLIDER

Optics solutions for full ring for both machines available

Collider placement optimisation

- Overall layout and placement optimisation process across both host states
- Following the "avoid-reducecompensate" directive of European and French regulatory frameworks
- Process integrates diverse requirements and constraints:

FUTURE

CIRCULAR COLLIDER

- performance permitting world-leading scientific research
- technical feasibility of civil engineering and subsurface constraints
- territorial constraints on surface and subsurface
- nature, accessibility, technical infrastructure, and resource needs & constraints
- economic factors including development of benefits for, and synergies, with the regional developments

Collaborative effort of technical experts at CERN, consultancy companies and government notified bodies

See FCCIS WP3: Placement session today

CIRCULAR Following outcome of placement studies

Exact four-fold symmetry

- Four experiments (A, D, G, & J)
- Two collimation insertions
 - betatron cleaning (F)
 - momentum cleaning (H)
- Extraction insertion + injection (B)
- RF insertion + injection (L)
- Last part of transfer lines in the ring tunnel
- Compatible with LHC or SPS as injector

- Number of arc cells: 42
- Cell length: 215.3 m
- Length of experimental straight sections: 1400 m
- Length of technical straight sections: 2160 m
- Length of circumference: 91.1 km

Overall FCC-hh layout

FUTURE CIRCULAR COLLIDER

FUTURE CIRCULAR FCC-hh layout and transfer lines

Comments on transfer lines

FUTURE

CIRCULAR COLLIDER

Experimental insertions

Same length as CDR

FUTURE

CIRCULAR COLLIDER

- Very similar optics and layout as CDR
- Same optics for PA, PD, PG, and PJ
- Major change to be implemented soon (already tested for the CDR version): radial displacement of FCC-hh IP towards that o FCC-ee

 $b_{x}(m), b_{y}(m) [*10**(3)]$

- Minimisation of the region of increased tunnel cross section.
- Optimisation of the size of the experimental cavern.
- Reuse of detector components for FCC-ee to FCC-hh?

Collimation insertions

Betatron collimation

FUTURE

CIRCULAR COLLIDER

- Shorter than CDR version
- New optics proposed •

 $b_x(m), b_y(m)$

Other insertions

CIRCULAR Progress with combined-function lattice

- The use of combined-function (dipole-quadrupole) might be an interesting option to
 - Increase filling factor
 - Simplify production (a single magnet type for the arcs)
- Recent progress
 - Design of dispersion suppressors for a combined-function lattice
 - Optimisation of the regular cell length (increased length)

 $3_x(m), \beta_y(m)$

Outlook

- The eight-point solution is being built and the main ingredients are already available.
- The next steps consists in providing a complete design of the optics of the new ring layout
 - Innovate the optics of the collimation insertion including new concepts from HL-LHC design
 - Review the dump optics merged with injection
 - Review the RF optics merged with injection
- Then, the optics design (collimation and dump) should be validated with detailed numerical simulations.
- Finally, a complete solution for the transfer lines integrated in the ring tunnel should be provided.
- The study of the combined-function solution will be pursued by considering the interplay with radiation and the layout of the cell correctors.

Thank you for your attention!

Reserve slides

FUTURE COLLIDER FCC implementation - footprint baseline

Current baseline position based on:

- lowest risk for construction, fastest and cheapest construction
- feasible positions for large span caverns (most challenging structures)
- 90 100 km circumference
- 12 surface sites with few ha area each

