Future Circular Collider Technical Infrastructure

Cooling and Ventilation systems for the new FCC configuration

G. Peon (EN/CV)

2/ June / 2022

FCC week 2022

FCC

Outline

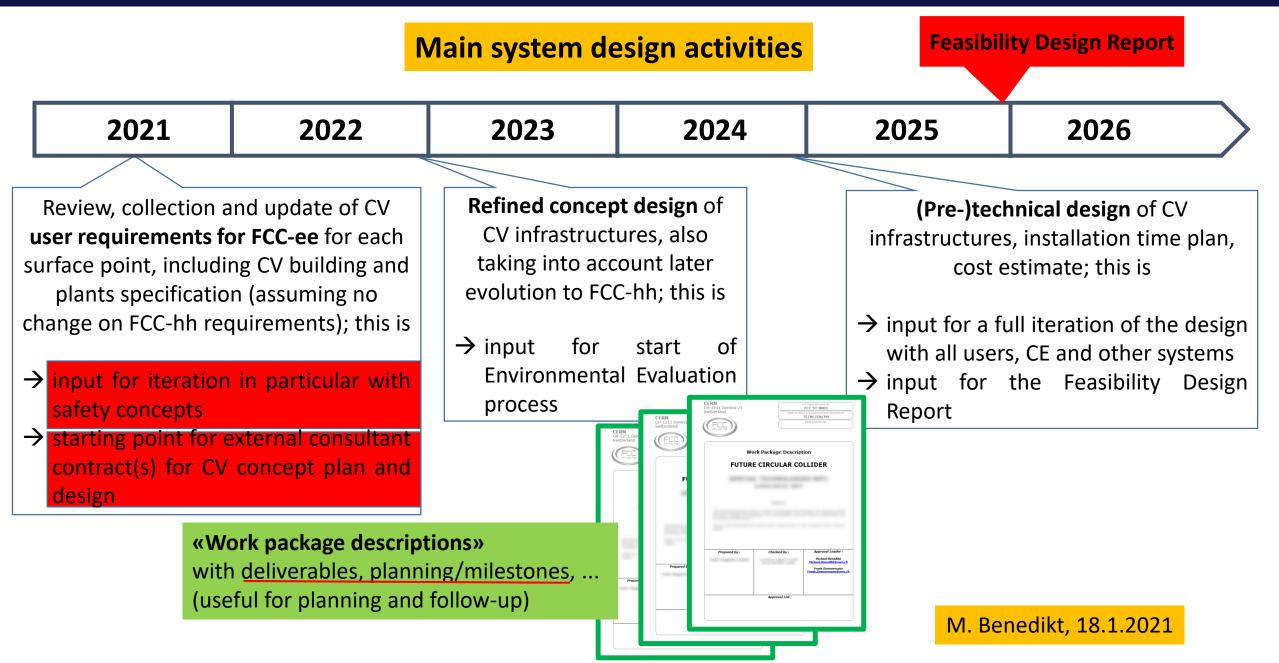
- Introduction
- Cooling of the new eight point configuration of the FCC-ee surface and underground
 - Primary cooling
 - Raw water (needs only)
 - Demineralised water distribution
 - Chilled water
- New parameters of the FCC tunnel ventilation system
- RF for FCC-ee cooling and ventilation
 - Point H
 - Point L
- Further steps

Introduction

- Cooling:
 - Environmental aspects
 - Energy consumption and waste heat recovery
 - Cost of installation for FCC-ee and cost of modification for FCC-hh
 - Safety aspects (firefighting water)
- Ventilation:
 - Connected to safety studies
 - Environmental aspects
 - Costs
 - Particular technical challenges in the tunnel and in the RF points.

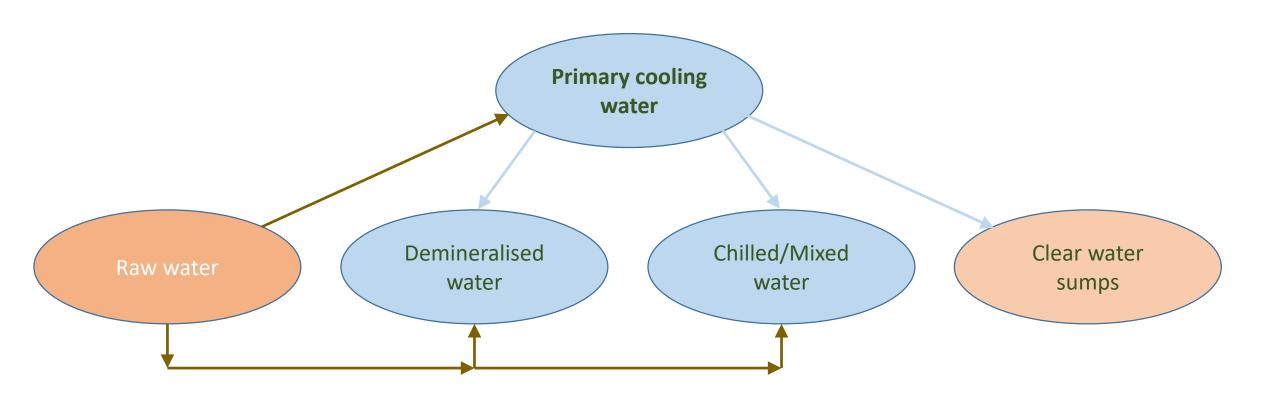
European Strategy for Particle Physics 2020 update document

Core paragraph and main request "order of the further FCC study":


"Europe, together with its international partners, should investigate the technical and financial feasibility of a future hadron collider at CERN with a centre-of-mass energy of at least 100 TeV and with an electron-positron Higgs and electroweak factory as a possible first stage.

Such a feasibility study of the colliders and related infrastructure should be established as a global endeavour and be completed on the timescale of the next Strategy update." (Feasibility study to be delivered end 2025 as input for ESPP Update expected for 2026/2027,)

From Benedikt's talk last year referring to CERN DG:


Technologies of machine and experiments: First priority of feasibility study: magnets; minimise environmental impact; energy efficiency and recovery

Main topics and milestones for CV activities 5

FCC

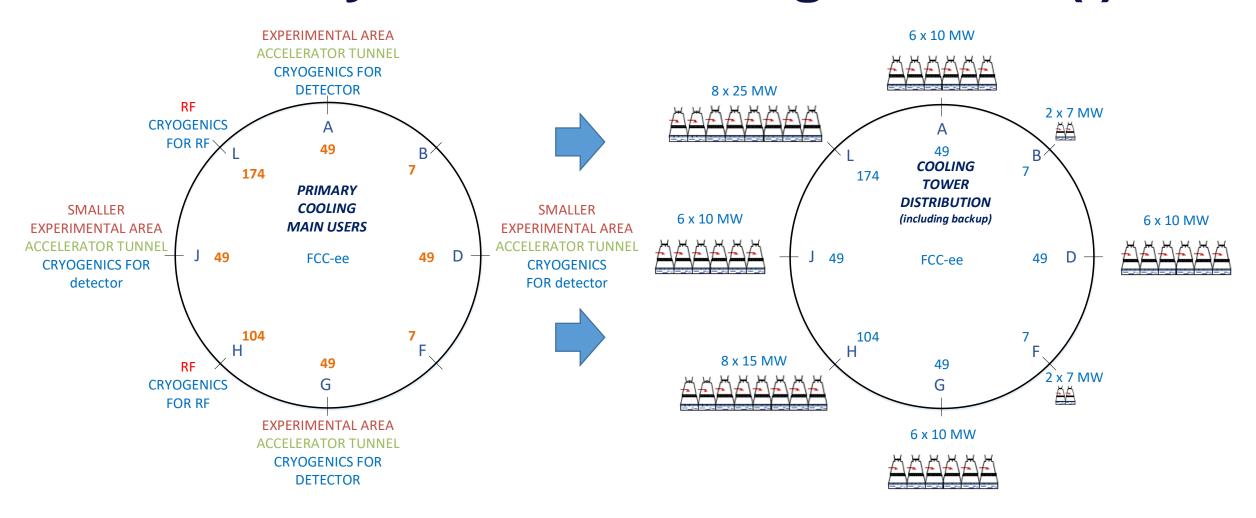
Cooling water FCC-ee

Primary Cooling Water

Primary water

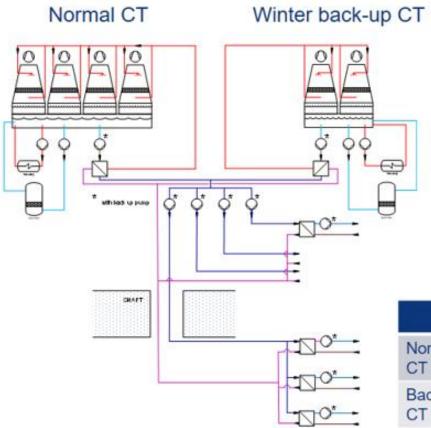
- □ Cooling Towers combined with alternative cooling solutions
 - □ Reducing water consumption, visual pollution, noise...
 - □ Waste Heat Recovery options:
 - District heating as for LHC;
 - □ Other applications (medical, industrial, agricultural, leisure, ...);
 - □ Combined or not with thermal energy storage.
- □ Water treatment:
 - □ Reducing corrosion;
 - □ Scaling, fouling and legionella;
 - □ Environmentally friendly : smaller chemical footprint

Blowdown water:


- □ Finding reject water points;
- □ Treatment before rejection.
- □ Maintenance strategies

The baseline consists of sets of cooling towers located at each FCC surface point

- The eight point FCC-ee configuration has "large" cooling towers at all points except for point B and F
- The estimative cooling power needed is:

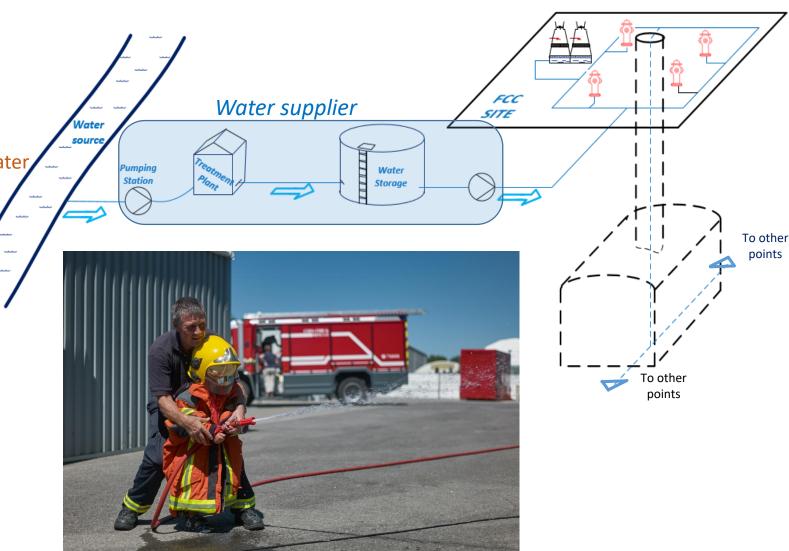

	FCC-ee COOLING POWER NEEDS FOR PRIMARY CIRCUITS (MW)												
Point	Cryogenics	Experiment	General Services	Power Converters (RF)	Chilled water	From underground	TOTAL						
PA		0.5	2		4,6	41.5	48.6						
PB			2		3,9	1.0	7.0						
PD		0.5	2		4,6	41.5	48.6						
PF			2		3,9	1.0	7.0						
PG		0.5	2		4,6	41.5	48.6						
PH	48		2	4	8.4	41.6	103.9						
PJ		0.5	2		4,6	41.5	48.6						
PL	95		2	6	10.3	60.9	174.2						

Primary Water : Cooling Towers (I)

Primary Water : CT Maintenance

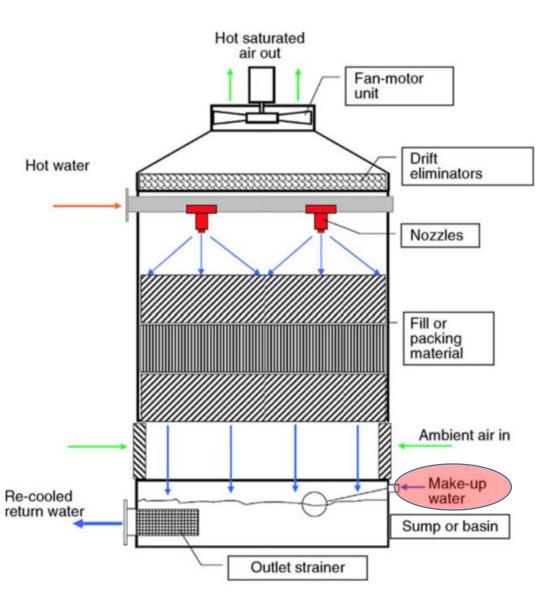
Double Cooling Tower Circuit

Wet Bulb T (°C)		Avg	Std	Min	Max	95% L	95% H
	Dec.	1		-12.1			-44
Cold Season	Jan.		3.7	118.7	11.6	8.1	41
Genadi	Feb.		31		15.0	10	- 41
	Mar.	11	27	10.5	14.1	11.2	-3.5
Mid Season	Apr.			-52	10.3	12.4	03
Deason	Oct.		3.5	-46	17.7	16.3	2.4
	Nov.	4.4		-9.4	14.5	11.6	-28
	May	12.0			-	10.0	
Hot	Jun	-					
season	Jul.	- 100					
	Aug	100			22.7	- 21	
	Sept	127					


From: Weather Conditions in the Geneva Area, Doubek, EDMS 1714932 v 1.0

	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec
Normal CT	Vaintenance	Maintenance	N _m + 1	N _m + 1	Ns	Ns	Ns	Ns	Ns	N _m + 1	N _m + 1	Vaintenance
Back up CT	N _W + 1	N _w + 1	Naintenance	Maintenance	+1	+1	+1	+1	+1	Maintenance	Maintenance	N _w + 1

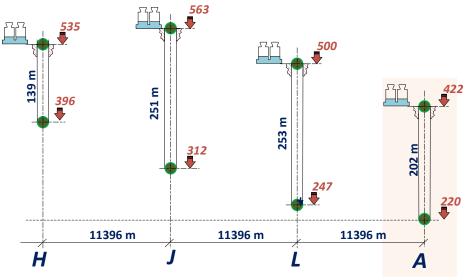
Raw water

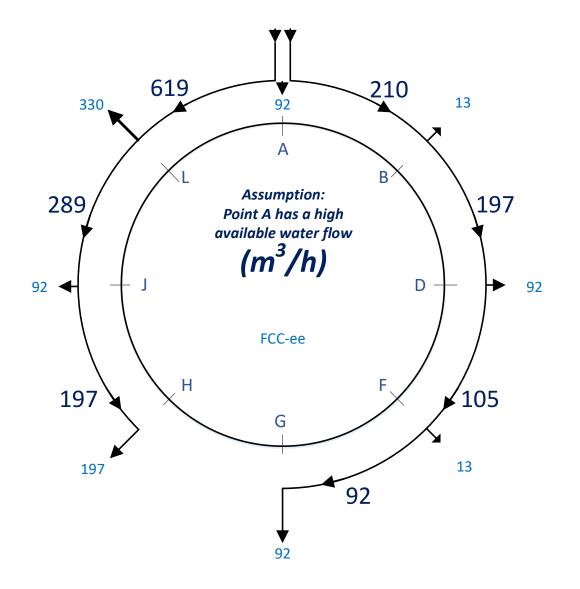


- □ From which points ? What flow?
 - Position of the surface points;
 - □ Water availability per point;
 - □ Water need per point;
 - Maximum diameter of the raw water pipe in the tunnel and shafts;
 - **FCC-hh needs**.
- □ Firefighting system;
- Pumping Stations and distribution systems are needed

Raw water

Make-up water needs (m ³ /hr)										
	Classical cooling Blowdown									
Point	tower	recycling								
PA	140	92								
PB	20	13								
PD	140	92								
PF	20	13								
PG	140	92								
PH	298	197								
PJ	140	92								
PL	500	330								
TOTAL	1,398	921								

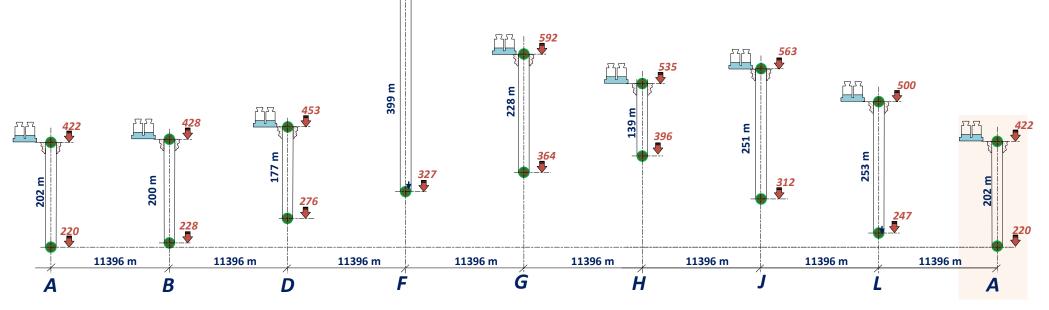



Raw water: possible distribution

Raw water supply:

FCC

- Assumption: high flow available at point A, supplying raw water to all the surface points
 - DN450 pipe in the tunnel cross section: main drawback is the integration (pipe could also be used for firefighting purposes)
 - □ Need of a DN300 pipe (point L) in the shaft
 - Point A is at the lowest level of all: 141 m pressure difference between point A and J for example -> PN 16 is not enough
 - DN400, PN25 would be another option



Raw water: altitude to be considered

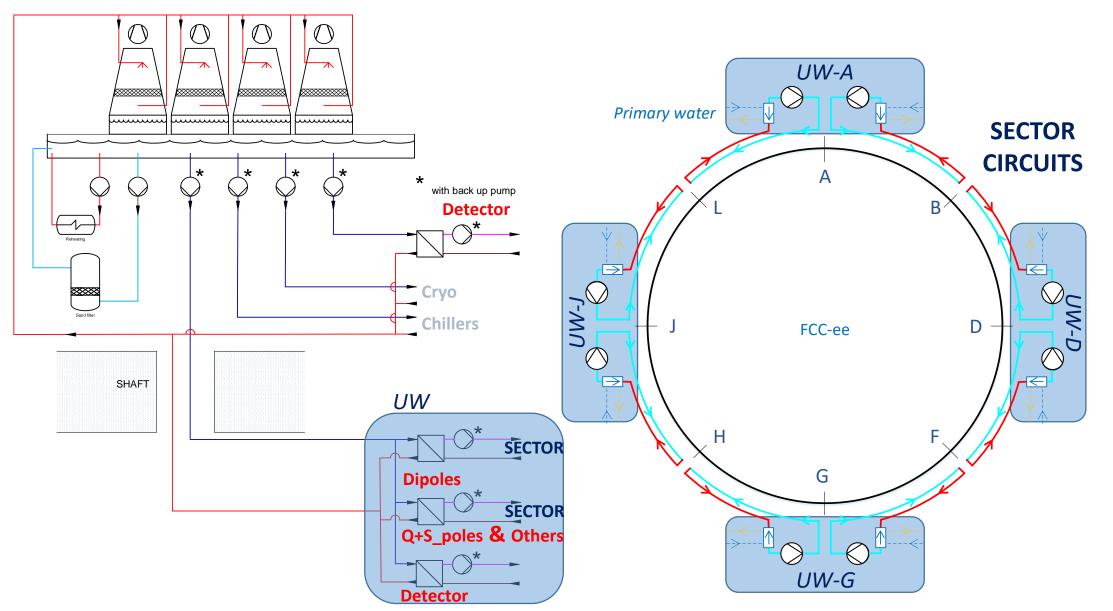
Sumps and Raw Water transfer among points have to considered altitude differences;

- □ Surface points D and F have the highest altitude difference between two surface points : important to consider if sending water from D to F;
- □ Point F has the longest shaft : important to consider for dimensioning of sumps systems;
- Point J and H underground have 84 m of altitude difference: important for the demi water circuits design.

Demineralised Water

Demineralised water

- Production and distribution
 - Central production vs Local production vs On truck production
 - □ A mix of solutions to be used differently according to:
 - □ The need : first filling or coping with major or minor leaks
 - □ Access to the point (distance and access roads)
- □ Main Cooling circuits in the FCC-ee underground
 - □ For copper circuits (quadrupoles, sextupoles, photon absorbers)
 - □ For aluminium circuits (dipoles)
 - **RF** cooling circuits
 - Experimental Area
 - ... others ?
 - □ Pipes nominal pressure, circuit pressurisation, balancing, etc.


Demineralised Water Needs

FCC-ee COOLING POWER NEEDS FOR DEMINERALISED WATER CIRCUITS IN THE UNDERGROUND (MW)

Point / Sectors	Magnets	Alcoves	Synchrotron Radiation Absorbers	Experimental Area	converters	RF underground	Cryo RF	TOTAL
PA / L-A, A-B	2 x 6.6	2 x 0.9	2 x 12.5	0.5	1.05			41.5
PB					1.05			1.05
PD / B-D D-F	2 x 6.6	2 x 0.9	2 x 12.5	0.5	1.05			41.5
PF					1.05			1.05
PG / F-G G-H	2 x 6.6	2 x 0.9	2 x 12.5	0.5	1.05			41.5
РН					1.05	38.7	1.8*	41.6
PJ /								
H-J J-L	2 x 6.6	2 x 0.9	2 x 12.5	0.5	1.05			41.5
PL					1.05	58.1	1.8*	60.9

○ FCC

Demineralised Water Circuits at A, G, D, J

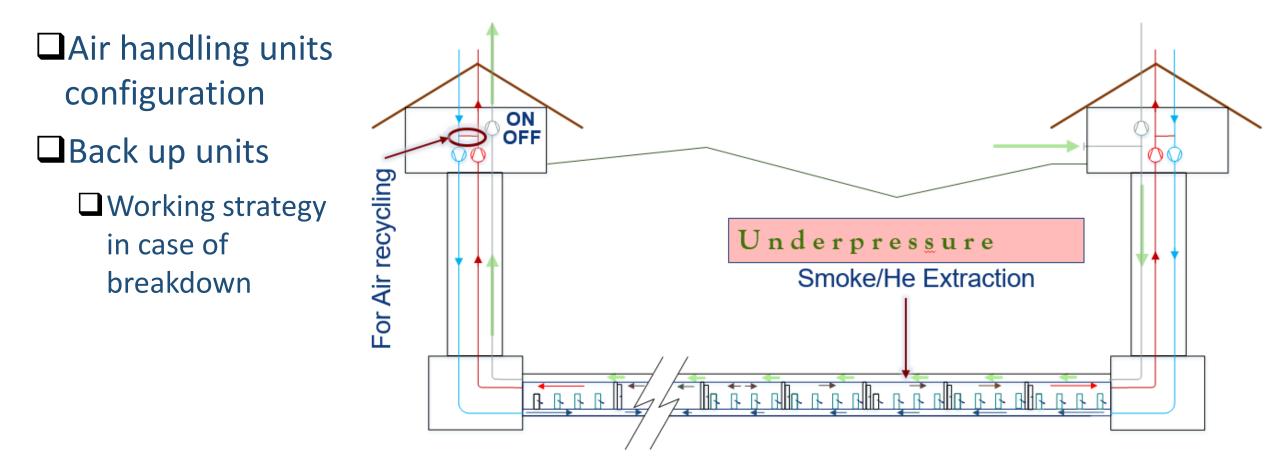
Chilled Water

Chilled / Mixed water

FCC

□ Air cooling and dehumidification);

- □ Temperature ranges, cooling power, location;
- Production and distribution
 - □ Chiller alternatives;
 - □ Back up strategy;
 - □ Number of circuits.


Point	Cooling power (kW)	Flow rate (m ³ /h)	Number of chillers	Cooling power/ chiller (kW)
А	3,834	551	5	1,000
В	3,284	472	5	900
D	3,814	548	5	1,000
F	3,284	472	5	900
G	3,834	551	5	1,000
Н	6,980	1,002	6	1,500
J	3,814	548	5	1,000
L	8,584	1,233	6	1,800

Tunnel Ventilation (Users' requirements)

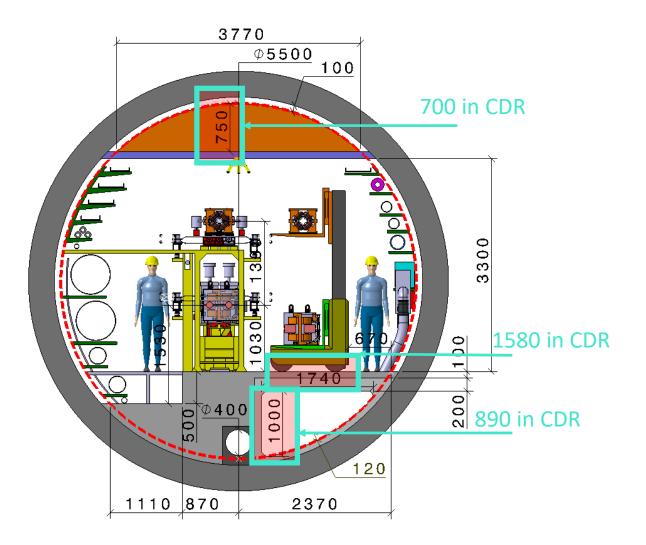
□ USER'S REQUIREMENTS (INPUT FOR CV)

- □ Modes: Run, Flushing, Access;
- Thermal loads to air from magnets, synchrotron radiation, electrical
 - racks, cables, etc. ; (Run)
 - □Location and value;
- Air temperature constraints : maximum and minimum values (Run, Flushing, Access);
- Maximum air speed (vibration) (Flushing);
- **Flushing mode:**
 - □ Radiation rate at exhaust air and in the tunnel (HSE);
 - Delay between accelerator stop and access to the tunnel;
- Air renewal rate, air quality requirements (Access);

Ventilation principle

20

Tunnel Ventilation


General Input data	
Cross section area	15.2 m ²
Sector length	11,396 m
Max. Temperature (running conditions)	32°C (to be confirmed)
Max. dew point Temperature	12°C (to be confirmed

Compartment Input data

Number of Compartments	26
Compartment length	440 m
Volume Compartment	6,688 m ³

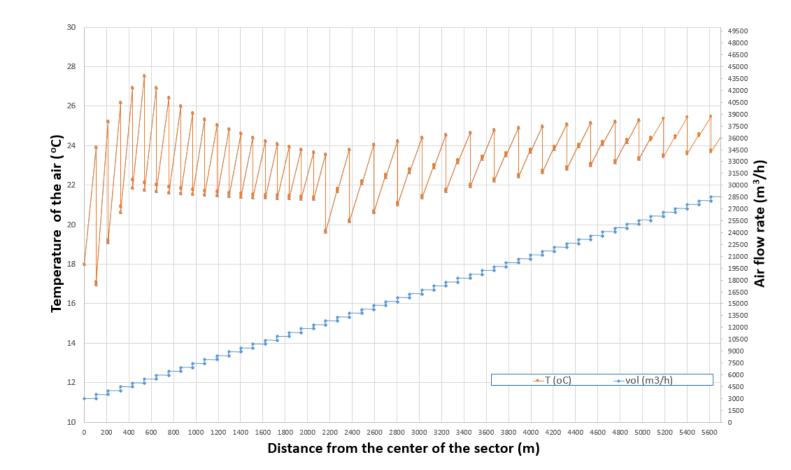
Ventilation parameters Normal operation air flow per sector 2 x 27,000 m³/h Flushing air flow (longitudinal) per sector 100,000 m³/h Air supply points per compartment 4 Air flow per supply point (normal operation) 520 Time to complete air renewal (flushing) 1.7 h Maximum air speed 0.5 m/s – 1.8 m/s (normal operation – flushing) Cooling capacity in normal operation for $\Delta T = 15$ K per 271 kW sector

Ventilation: new tunnel cross section

Heat loads on Air (kW)

POINT	Cryogenics	Experimental Areas	General Services	Power Converters	Shaft pressurisation	Fresh air for underground areas	TOTAL	On the surface
А		50	500		300	150	1000	
В			500		150	50	700	
D		40	500		300	150	990	
F			500		150	50	700	
G		50	500		300	150	1000	
н	2,400 *		500	2,000 *	150	150	5,200 (800 to CW)	
J		40	500		300	150	990	* Extracted w/o chilled
L	4,750 *		500	3,000 *	150	150	8,550 (800 to CW)	water

	POINT	Cryogenics	RF	Experimental Areas	Power Converters	Ventilation UW	TOTAL				
In underground areas								50	220	200	470
					В				220		220
								40	220	200	460
and fo	r EAO	CH			F				220		220
SECTOR	Magnets		Synchrotron radiation absorbers		G			50	220	200	470
SECTOR		Cables		TOTAL	Н	180	3,200		220	200	3,800
	352	1,763	250	2,364	J			40	220	200	460
	332		230		L	180	4,800		220	200	5,400


Ventilation FCC-ee: Particular Aspects

Extracting heat load without generating high temperature gradients (Survey constraints)

- Heat loads distribution over the tunnel
- Local cooling distribution over the tunnel

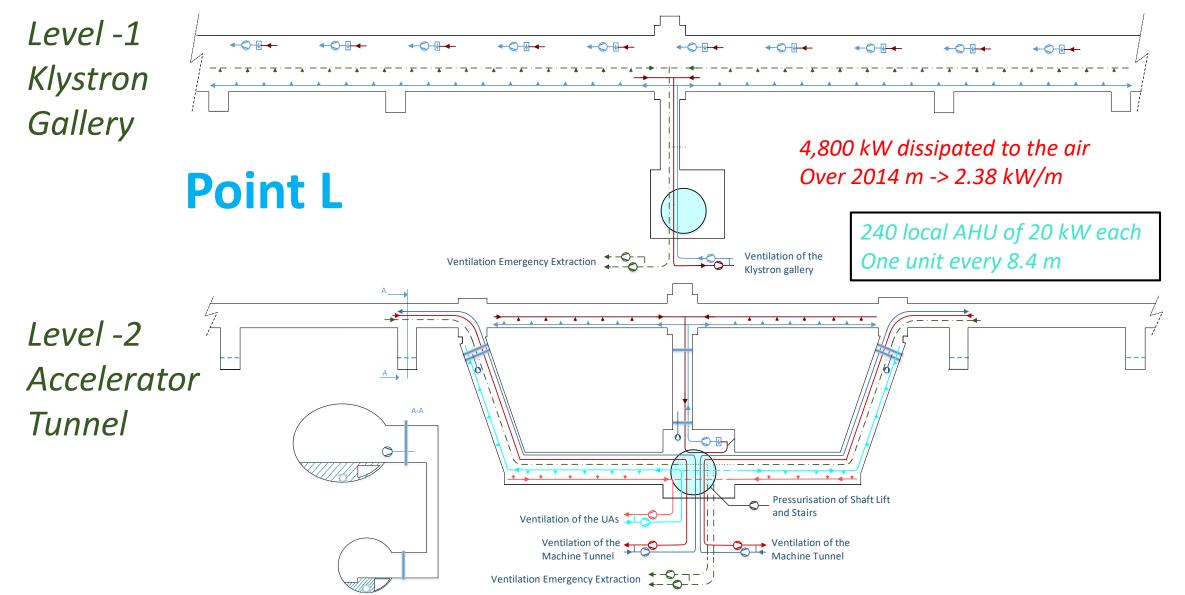
Example:

- Flow at the center of the sector: 3000 m³/h
- Flow at an extremity of the sector: 28000 m³/h
- Local cooling:
 - 4 x 7 kW,
 - 15 x 9 kW,
 - 17 x 16 kW
 - TOTAL Local air cooling: 435 kW
- TOTAL Main ventilation: 65 kW
- TOTAL both systems: 500 kW

Other Ventilation Systems

- Ventilation of the Experimental Caverns
- □Ventilation of the RF areas in the underground
- □Ventilation of the auxiliary areas
 - Connecting caverns
- Pressure cascade between zones
 Sense and pressure difference between zones
 Air locks location

Other Ventilation Systems


RF at Point L

FCC accelerator tunnel

Klystron Gallery

e production and and and

Ventilation of the RF areas in the underground of Pt. L

○ FCC

Ventilation of the RF areas in the underground of Pt. L

240 local AHU of 20 kW each One unit every 8.4 m

Next Steps

Get needed data from users and other services, including FCC-hh;

Call for Tenders for consultants;

□ Selection criteria: Experience, Qualified Personnel, Software,...

Deliverables:

What :

Cost estimate of baseline design;

□ New design in search of efficiency;

Solid basis:

Calculations;

□ Previous experience;

□ Measurements.

Accompany the consultants through the project and be a facilitator between them and the different stakeholders

□ Produce documentation for the next Design Review.

Thank you for your attention.