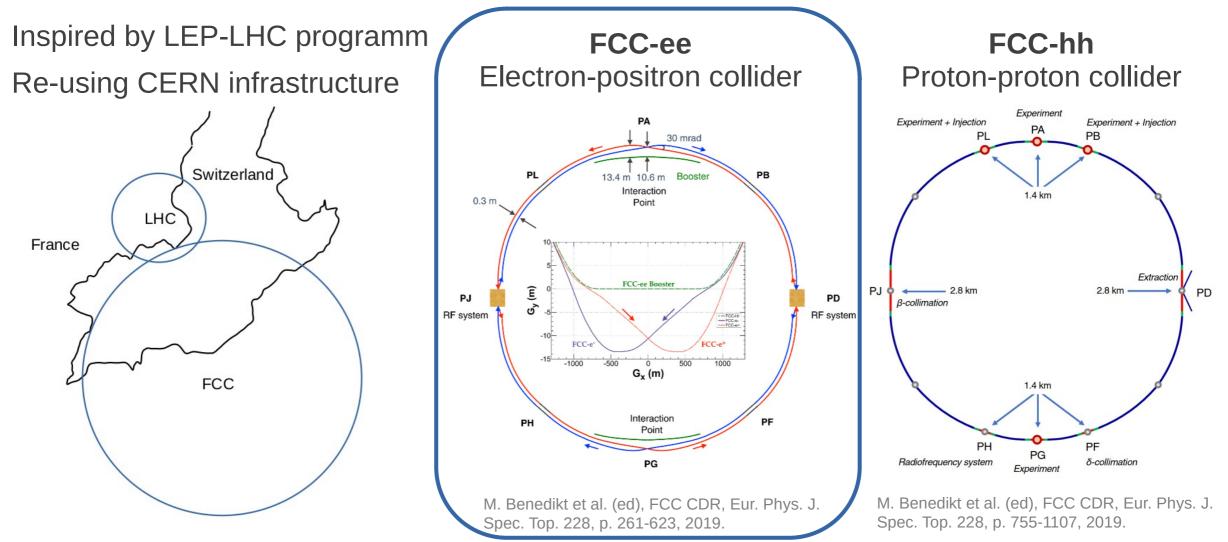


Center-of-mass energy and boosts for various RF-configurations

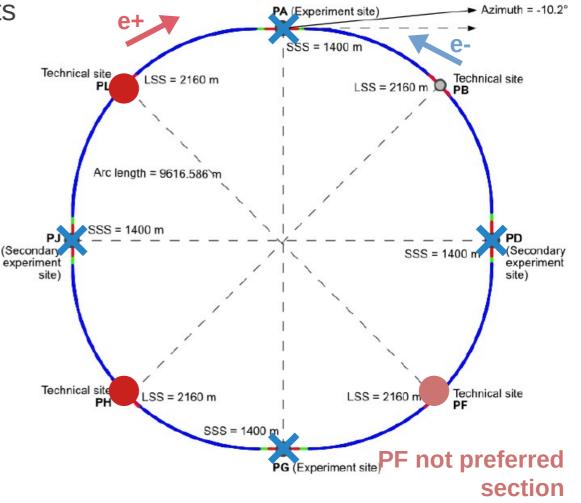
Jacqueline Keintzel


Acknowledgements: Alain Blondel, Victor Caudan, Riccardo De Maria, Katsunobu Oide, Tobias Persson, Rogelio Tomas, Jorg Wenninger, Frank Zimmermann

Future Circular Collider Week 2022 Energy Polarization, Calibration and Monochromatication Session 1st June 2022

FCCIS – The Future Circular Collider Innovation Study. This INFRADEV Research and Innovation Action project receives funding from the European Union's H2020 Framework Programme under grant agreement no. 951754.

Future Circular Colliders


JACQUELINE KEINTZEL FCC-EE ECM AND BOOSTS FOR VARIOUS RF-CONFIGURATIONS

Motivation

- Designed for high precision physics experiments
- FCC-ee demands precise knowledge of beam energies, center-of-mass energies and boosts at all Interaction Points (IPs)
- New "lowest risk" 4 IP (X) scenario
- Beam energy depends on RF-location (
- One RF-point for Z-, WW-, and Higgs-lattice
- Two RF-points for ttbar-lattice

Talk: K. Hanke, "The RF System of FCC-ee – General Considerations", Thursday 2nd June 2022, 09:00

JACQUELINE KEINTZEL FCC-EE ECM AND BOOSTS FOR VARIOUS RF-CONFIGURATIONS

• Beam energy and thus center-of-mass energy (ECM) depends on various parameters

Arc length = 9616 586

• Placement, number and exact configuration of the RF-cavities

Physics requirements

- A: 1 RF-section, which is common (individual) for both beams

В

vc length = 9616 586

- B: 2 RF-sections, which are common (individual) for both beams
- C: 2 RF-sections, which are individual for each beam
 - ... RF for positrons
- ... RF for electrons

SSS = 1400

Integration and cryogenics requirements

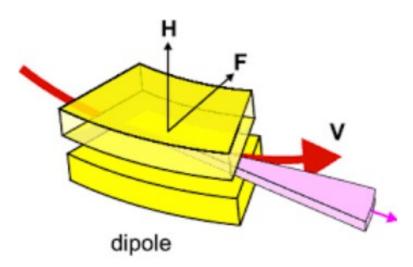
Talk: F. Peauger, "Baseline and cavity options for FCC-ee", Tuesday 31st June 2022, 11:00

> Talk: F. Valchkova, "Integration of FCC-ee RF Sections", Thusday 2nd June 2022, 09:30

Talk: A. Blondel, "FCC-ee EPOL", Wednesday 1st June 2022, 09:00

JACQUELINE KEINTZEL FCC-EE ECM AND BOOSTS FOR VARIOUS RF-CONFIGURATIONS

SSS = 1400


Α

Arc length = 9616 5

SSS = 1400 m

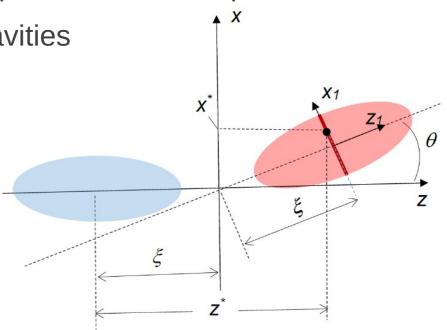
- Beam energy and thus center-of-mass energy (ECM) depends on various parameters
- Placement, number and exact configuration of the RF-cavities
- Synchrotron radiation

Energy loss strongly energy (y⁴) dependent

Average energy loss through a dipole

$$\Delta E[\text{eV}] = \frac{2}{3} \frac{q_0}{4\pi\epsilon_0} \beta_{\text{rel}}^3 \gamma_{\text{rel}}^4 \int \frac{1}{\rho^2} \, \mathrm{d}s$$

L ... Dipole length ρ ... Bending radius $\rho=L/\theta$ θ ... Bending angle q_0 ... Unit charge ε_0 ... Vacuum permittivity β_{rel} ... ~ 1

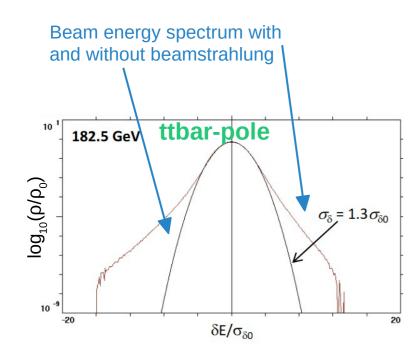

- Beam energy and thus center-of-mass energy (ECM) depends on various parameters
- Placement, number and exact configuration of the RF-cavities
- Synchrotron radiation
- Beamstrahlung
- ρ_{min} ... bending radius N_p ... bunch population γ ... relativistic gamma σ_x ... hor. Beam size σ_z ... bunch length Xi ... vert. Beam parameters $\beta_{x,y}$... β -function at IP $\varepsilon_{x,y}$... Transverse emittances

Bunch interacts with force field of opposing bunch, bending radius:

$$\frac{1}{\rho_{\min}} \propto \frac{N_p}{\gamma \sigma_x \sigma_z} \propto \frac{\xi_y}{\sqrt{\beta_x^* \beta_y^*}} \sqrt{\frac{\varepsilon_y}{\varepsilon_x}}$$

Synchrotron photons are emitted with critical energy:

 $u_c \propto \frac{\gamma^3}{\rho} \propto \xi_y$


Talk: A. Chiarma, "Machine induced backgrounds in the FCC-ee MDI region and Beamstrahlung radiation ", Thursday 2nd June 2022, 14:35

Beamstrahlung and Boosts

- Beamstrahlung (BS): crossing bunches interact with force field created by the other bunch
- Dominant effect: increased energy spread
- Does not shift peak energy

Black: no beamstrahlung Red: + beamstrahlung Green: + angular resolution Blue: + photon emission Pink: + asymmetry between electron and positron energy

Only asymmetric energies shift the center of the energy spectrum for dimuon events

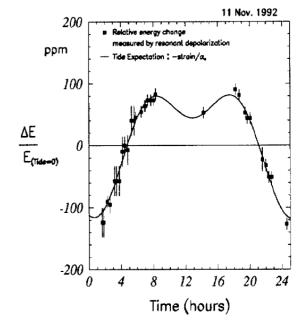
Measuring 10⁶ dimuon events yields precision of 10⁻³ 5 min measurements at FCC Z-mode gives boost precision of 50 keV and one 8 h shift will give 5 keV

Statistics of 1 million dimuon events at Z-pole $e+e- \rightarrow \mu+\mu-(\gamma)$ (y)... Initial-State-Photon (ISR)

A. Blondel et al., arXiv:2019.12245, 2019.

JACOUELINE KEINTZEL FCC-EE ECM AND BOOSTS FOR VARIOUS RF-CONFIGURATIONS

- Beam energy and thus center-of-mass energy (ECM) depends on various parameters
- Placement, number and exact configuration of the RF-cavities
- Synchrotron radiation
- Beamstrahlung
- Circumference changes, e.g. earth tides
- Dispersion at the interaction point
- Chromatic optics functions
- Optics errors
- ... Talk: T. Charles, "Optics correction studies", Tuesday 31st May 2022, 09:50


Change of ECM due to dispersion at the IP

$$\Delta \sqrt{s} = -2u_0 \frac{\sigma_E^2 (D_{u1} - D_{u2})}{E_0 (\sigma_{B1}^2 + \sigma_{B2}^2)}$$

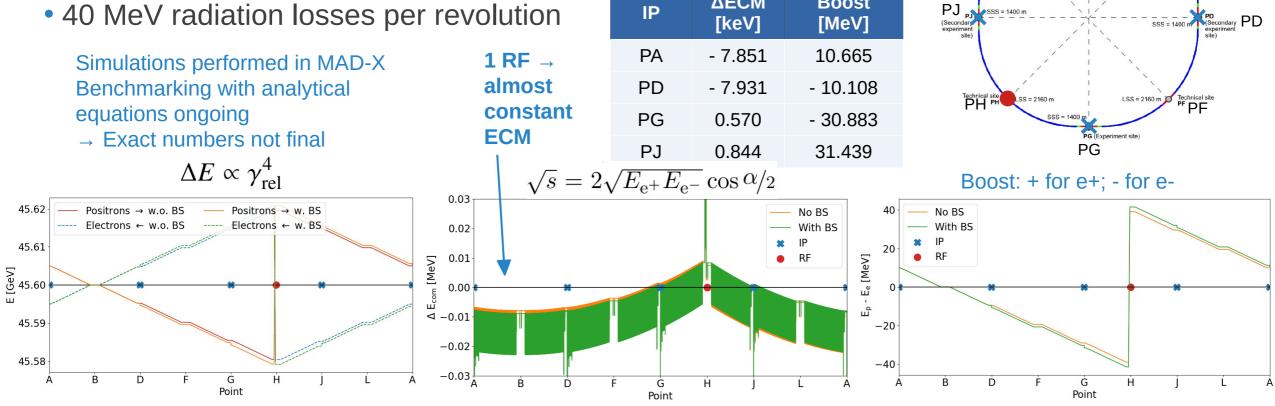
 $U_0 \dots$ nominal ECM $D_{u1,2} \dots$ dispersion at the IP $E_0 \dots$ nominal energy $\sigma_{B1,2} \dots$ beam size at the IP

Talk: R. Tomas, "Correction and tuning", Wednesday 1st June 2022, 14:00 Energy change due to earth tides in LEP

 \rightarrow needs to be compensated by RF

Many more things to consider to determine collision energy

ECM and Boosts for Z-Mode


- PH: 0.1 GV 400 MHz cavity
 - Sum of losses close to sum of absolute boosts

One 8 h shift will give 5 keV precision

ΔΕСΜ

Boost

- \leq 0.62 MeV beamstrahlung losses per beam and IP (simulations)
- 40 MeV radiation losses per revolution

Azimuth = -10.2

Technical site

PB

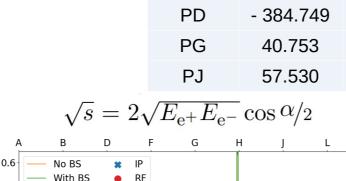
PA

PL

SS = 2160 n

Arc length = 9616.586

SS = 1400


1.95 = 2160

JACOUELINE KEINTZEL

FCC-EE ECM AND BOOSTS FOR VARIOUS RF-CONFIGURATIONS

ECM and Boosts for WW-Mode

- PH: 0.75 GV 400 MHz cavity
- \leq 1.4 MeV beamstrahlung losses per beam and IP (simulations)
- 370 MeV radiation losses per revolution
 - Simulations performed in MAD-X Benchmarking with analytical equations ongoing
 - → Exact numbers not final

~100 keV after 10 days

IP

PA

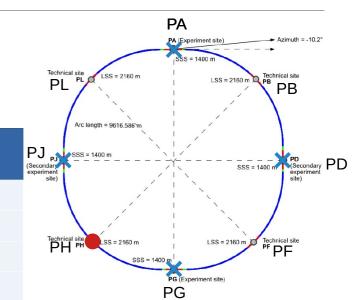
1.1 muon pairs per second for 2 IPs

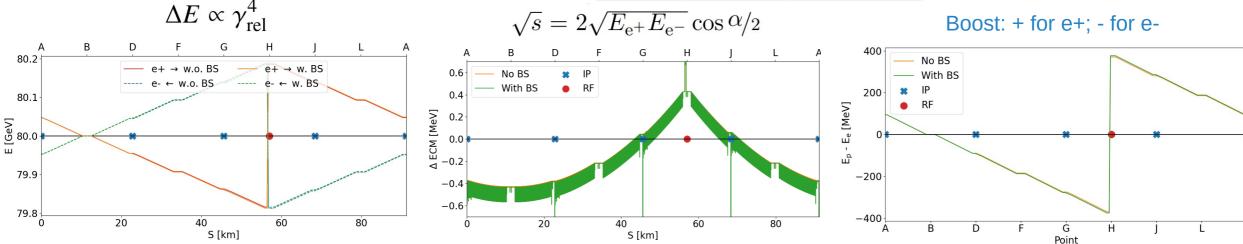
ΔΕСΜ

[keV]

- 379.203

Boost

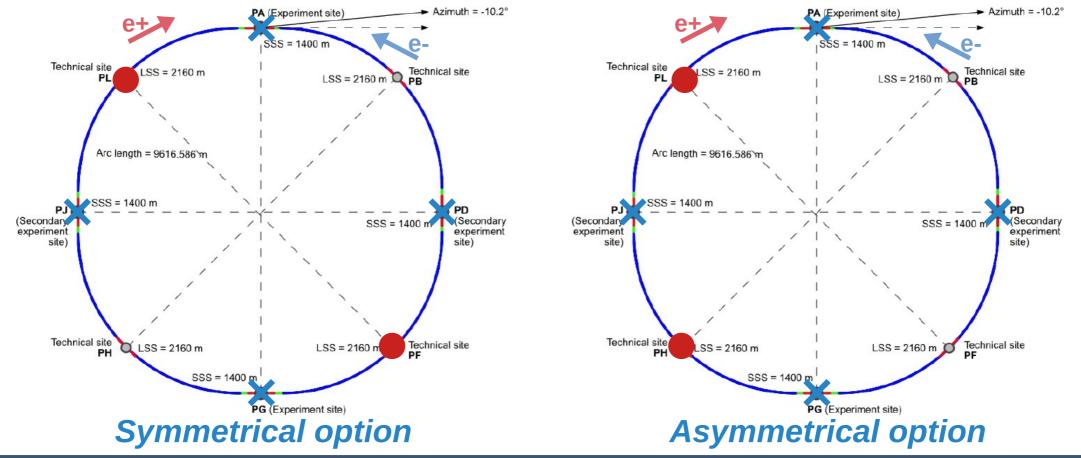

[MeV]


96.402

- 91.447

-279.299

284.254


FCC WEEK 2022 01 JUN 2022

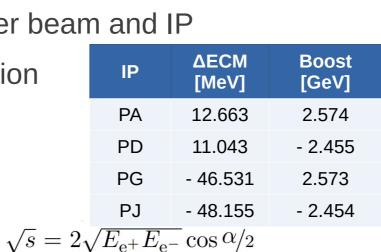
JACOUELINE KEINTZEL

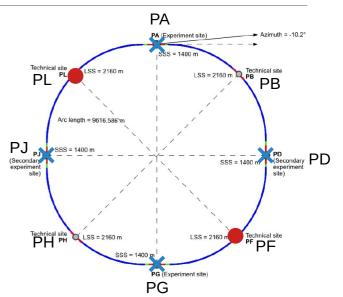
FCC-EE ECM AND BOOSTS FOR VARIOUS RF-CONFIGURATIONS

RF-Placements for ttbar-Mode

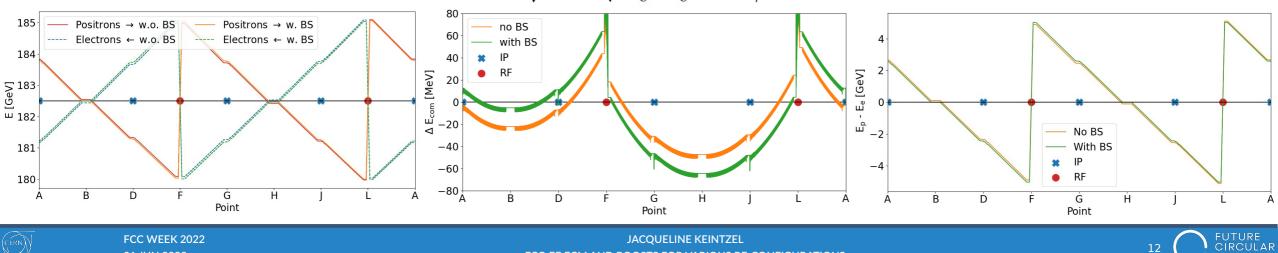
• Two placement options for the RF-cavities (), for now no errors considered

FCC WEEK 2022 01 JUN 2022 JACQUELINE KEINTZEL FCC-EE ECM AND BOOSTS FOR VARIOUS RF-CONFIGURATIONS

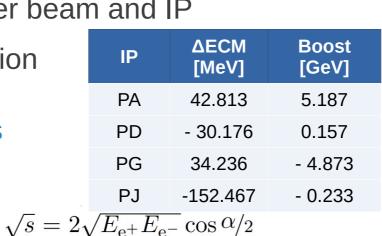

- PF: 5 GV, 400 MHz cavity and PL: 6.7 GV, 800 MHz cavity
- \leq 14 MeV beamstrahlung losses per beam and IP
- 10 GeV radiation losses per revolution

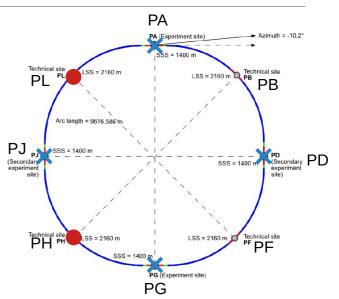

Different ECM and boosts at the IPs result from, radiation losses and BS

 $\Delta E \propto \gamma_{\rm rel}^4$

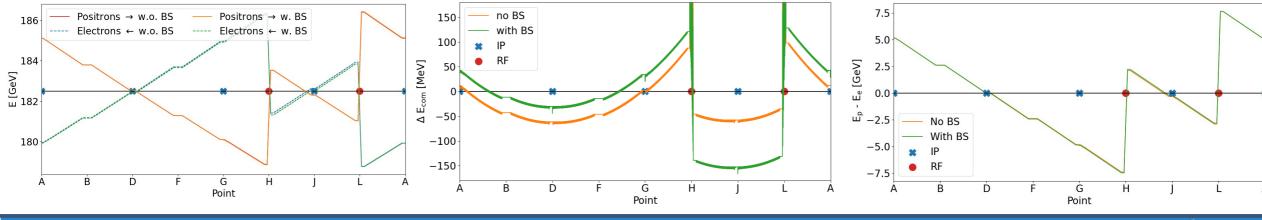

BS small impact on boosts

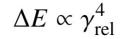
01 JUN 2022


Boost: + for e+; - for e-



FCC-EE ECM AND BOOSTS FOR VARIOUS RF-CONFIGURATIONS


- PH: 5 GV, 400 MHz cavity and PL: 6.7 GV, 800 MHz cavity
- \leq 14 MeV beamstrahlung losses per beam and IP
- 10 GeV radiation losses per revolution

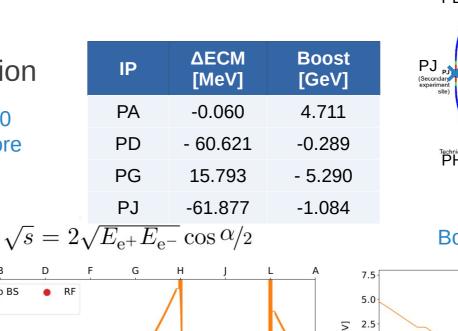

Different ECM and boosts at the IPs result from asymmetric RF placement, radiation losses and BS BS small impact on boosts

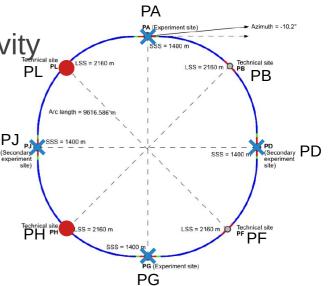
Boost: + for e+; - for e-

FCC WEEK 2022

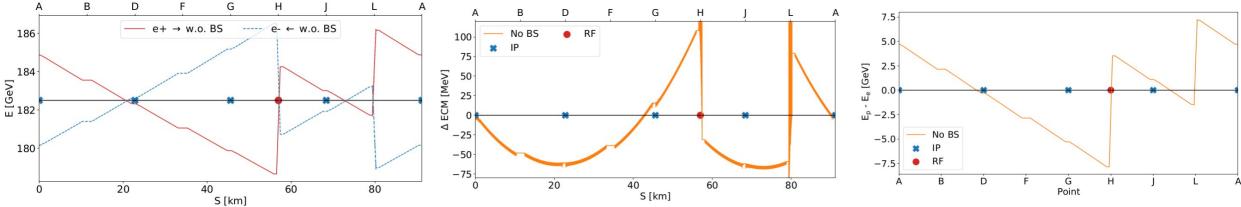
01 JUN 2022

FCC-EE ECM AND BOOSTS FOR VARIOUS RF-CONFIGURATIONS




- PL: 2.48 GV 400 MHz + 4.6 GV 800 MHz, PH: 4.6 GV, 800 MHz cavity
- Beamstrahlung not yet included

 $\Delta E \propto \gamma_{\rm rel}^4$


• 10 GeV radiation losses per revolution


Although studies not yet completed, splitting the 800 MHz RF system seems tentatively beneficial for more equal ECM and boosts

Energy from Spin Tune

- Using resonant depolarization and polarimeter to determine average beam energy
- Understand spin dynamics in a synchrotron essential

Spin movement through FODO lattice with 100 m circumference

$$E = mc^2 \left(\frac{\nu}{a} - 1\right)$$

E ... energy *m* ... *mass* c ... speed of light v ... spin tune a ... anomalous magnetic dipole moment

Poster: V. Caudan, "Spin precession as a method for beam energy measurement", **Thursday 2nd June 2022, from 16:00**

Real spin

Sampled spin

ti + 1

Focusing guadrupoles

RF strucure

Defocusing guadrupoles

spin [a.u.]

Projected

ti

Summary

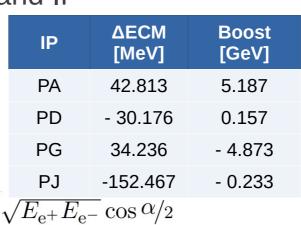
- Determination of ECM at each IP not trivial since beam energies not constant
 - First presented studies include synchrotron radiation losses and beamstrahlung
 - Future studies will include optics errors, chromatic optics functions, dispersion, etc.
- One RF-point for both beams lead to almost constant ECM
 - Physics requirements for Z- and WW-lattice fulfilled
- Two RF-points lead to larger ECM offsets and boosts
 - Studied layouts fulfill physics requirements at top energy
- Depolarization of polarized beams used to determine average beam energy

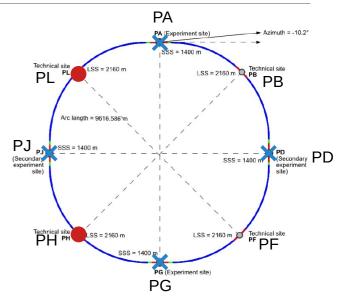
Thank you! Centre-of-mass energy and boosts for various RF configurations

Jacqueline Keintzel

Acknowledgements: Alain Blondel, Victor Caudan, Riccardo De Maria, Katsunobu Oide, Tobias Persson, Rogelio Tomas, Jorg Wenninger, Frank Zimmermann

Future Circular Collider Week 2022 Energy Polarization, Calibration and Monochromatication Session 1st June 2022




FCCIS – The Future Circular Collider Innovation Study. This INFRADEV Research and Innovation Action project receives funding from the European Union's H2020 Framework Programme under grant agreement no. 951754.

- PH: 2.48 GV, 400 MHz cavity and PL: 9.19 GV, 800 MHz cavity
- 14 MeV beamstrahlung losses per beam and IP
- 10 GeV radiation losses per revolution

Different ECM and boosts at the IPs result from asymmetric RF placement, radiation losses and BS BS small impact on boosts

$$\Delta E \propto \gamma_{
m rel}^4$$
 $\sqrt{s} = 24$

Boost: + for e+; - for e-

