Incorporation of LCFIPlus Vertexing Module in FCCAnalyses

Freya Blekman^{1,2}, Florencia Canelli³, Kunal Gautam^{3,4}, Armin Ilg³, Anna Macchiolo³, Eduardo Plörer^{3,4}

¹Deutsches Elektronen-Synchrotron, ²Universität Hamburg, ³University of Zürich, ⁴Vrije Universiteit Brussel

Contact: kunal.gautam@cern.ch

Motivation	Vertex Fitter			
 Vertexing is an integral part of event reconstruction. Secondary vertex reconstruction is very important for ne studies like jet-flavour tagging and testing vertex detector perform. Identifying V⁰ vertices can also help improve the perform existing jet-flavour tagging algorithm (see poster by E. Plörer). 	 The track parameters are updated to make all tracks pass through a common vertex while minimising the χ2 Deviations in track parameters are controlled by the covariance matrix Track projections are used as constraints for the χ2 fit The track helix in cartesian coordinates is used in parametric form Beam Spot constraint can be optionally chosen by user. 			
• Three processes have been considered: • $K_{s} \rightarrow \pi^{+}\pi^{-}; \Lambda^{0} \rightarrow p\pi^{-}; \gamma_{conv} \rightarrow e^{+}e^{-}$	Two sets of constraints are available to be			

• V⁰s identified by constraining the following properties

	K _s		∧ 0		γ _{conv}	
	tight	loose	tight	loose	tight	loose
Mass [GeV]	[0.493, 0.503]	[0.488, 0.508]	[1.111, 1.121]	[1.106, 1.126]	< 0.005	< 0.01
r [mm]	> 0.5	> 0.3	> 0.5	> 0.3	> 9	> 9
p.r	> 0.999	> 0.999	> 0.99995	> 0.999	> 0.99995	> 0.999

chosen by the user

Performance Estimate

Considering $B_s \rightarrow J/\Psi + \phi \rightarrow \mu \mu KK$

- 10K events. Monte-Carlo BS vertex can be found in 6.75K events.
- Check min of distance between any SV and MC Bs vertex, fit with two crystal ball functions

SV finder resolution with **R=1.0cm** beampipe. For details on different vertex detector designs see poster by A. Ilg

 $B_s \rightarrow J/\psi \phi \rightarrow \mu\mu KK, n(SV)>0$

This is the first successful implementation of an SV finder in FCCAnalyses based on the LCFIPlus framework. For more details, please refer to the talk presented at the FCC Physics Performance Meeting on 16 May 2022. ^[1] arXiv:1506.08371

