STUDY OF THE Z-BOSON COUPLINGS TO HEAVY FERMIONS AT THE FCC-ee

<u>G. Guerrieri^{1,2}, M.Cobal^{1,3}, G.Panizzo^{1,3}, M. Pinamonti¹, L.Toffolin^{1,2}</u> FCCW2022, 30 May, 3 June 2022 (Paris)

THEORETICAL FRAMEWORK

٧p		\bigcirc	1 FF	D
	FB	U		

Inclusive production cross section: $\frac{d\sigma}{d\Omega} = N_c \frac{\alpha^2}{4s} \{ (1 + \cos^2\theta) \left[Q_f^2 - 2\chi_1 v_e v_f Q_f + \chi_2 (a_e^2 + v_e^2) \left(a_f^2 + v_f^2 \right) \right]$ $+2\cos\theta\left[-2\chi_1a_ea_fQ_f+4\chi_2a_3a_fv_ev_f\right]\}$ $a_f = T_3^f$, $v_f = T_3^f - 2\sin^2\theta_w Q_f$

THE ELECTROWEAK FIT

• Experimental b-quark asymmetry has a ~2.8 pull w.r.t. theoretical prediction (QED/EWK, NNLO QCD, b-quark mass, jet/thrust axis corrections)

ANALYSIS STRATEGY

ESTIMATION METHOD

THRUST AXIS

• Thrust axis can be used to estimate the direction of the original quark. For a given event defined as:

- Jet charge can be measured with two classes of methods:
 - Q_{jet} variable (with > 6 charged tracks sum, each weighted)

 \circ Soft μ charge (here in a simplified variant "Qjet ")

 $p_{T\mu}^{lab} > 4 \text{GeV}, \ p_{T\mu}^{rel} > 0.8 \text{ GeV},$ $Q_{\mu,jet} \equiv q_{\mu} \left(\frac{p_{\mathrm{T}\mu}^{rel}}{m_b}\right)^r$

THRUST AXIS vs CHARGE FLOW

Revised QCD effects on the $Z \rightarrow \overline{bb}$ forward-backward asymmetry, D. d'Enterria and C. Yan *e-Print: 2011.00530, 2020*

Fitting the distribution of polar angles θ between the e⁻ and the thrust axis.

Fitting the charge flow distribution wrt $\cos\theta$.

SUMMARY AND PLANS

 Collaborative development of with Key4HEP and the EDM4HEP event data model frameworks

B-QUARK IDENTIFICATION

- Decay channels with leptons (e or μ) (Soft lepton tagging)
- Non-zero lifetime of heavy flavoured particles <L> ~2.7mm
 - \circ Hard fragmentation and large mass of the b-quark \rightarrow leptons from bquark decay with large transverse momentum, P_T , with respect to the quark direction.
 - c-quark: lower mass and softer fragmentation, produces leptons with lower P_T , but nevertheless still higher than that of leptons from the decays of the \rightarrow lighter q
- Ingredients for machine learning algorithms

- Ongoing and planned studies:
 - Truth level analyses on thrust axis and A^b_{FR} estimation
 - Jet charge, soft muon methods for charge reconstruction
 - Machine Learning driven approach to event reconstruction
- Signal+background studies (c,light jets)

¹ INFN Trieste, Gruppo Collegato di Udine ² Università degli studi di Trieste ³ Università degli studi di Udine

