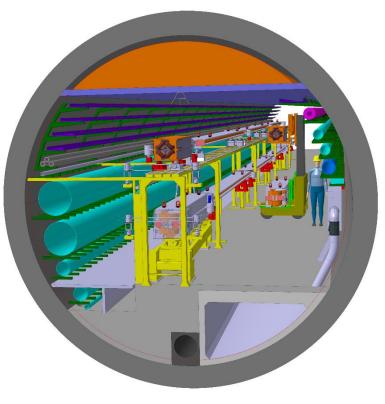
FCC-ee Arc Half-Cell Mock-up

F. Carra (CERN)

with contributions from many colleagues, including: J. Bauche, S. Atieh, L. Baudin, M. Di Castro, C. Eriksson, C. Garion, M. Garlasché, R. Losito, D. Perini, T. Raubenheimer, D. Smakulska, M. Timmins, F Valtchkova-Georgieva, F. Zimmermann.


Layout

FCC

- Aim of the project
- Timeline
- Arc cell configuration(s)
- Needed studies and challenges
- Novel concepts
- Conclusions

Aim of the project

- Arc half-cell: most recurrent assembly of mechanical hardware in the accelerator (~1500 similar FODO cells in the FCC-ee)
- Mock-up → Functional prototype(s) → Preseries → Series
- Building a mock-up allows optimizing and testing fabrication, integration, installation, assembly, transport, maintenance
- Working with demonstrators of the different equipment, and/or structures with equivalent volumes, weights, stiffness

Arc perspective view, F. Valchkova-Georgieva

Status

FCC

- Arc configuration: CDR (2019) + updates during FCC feasibility study
- Conceptual design to fabrication
 - 1. Confirmation/update of the functional specifications
 - 2. Arc integration study
 - 3. Engineering design of systems and interfaces
- For collider AND booster

Table 2: RMS magnet misalignment values. (The definition of the misalignment parameters are defined in Fig. 1.

Туре	ΔX (μ m)	ΔY (μ m)	ΔPSI (μrad)	ΔS (μ m)
Arc quadrupole*	50	50	400	150
Arc sextupoles*	50	50	40030	150 ⁰
Dipoles	1000	1000	400	1000
Girders	150	150	-	1000
IR quadrupole	100	100	250	250
IR sextupoles	100	100	250	250
BPM**	40	40	100	-

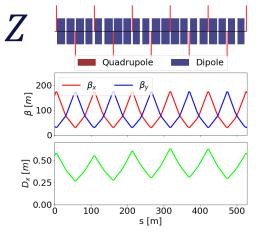
* misalignments relative to girder placement** misalignments relative to quadruple placement

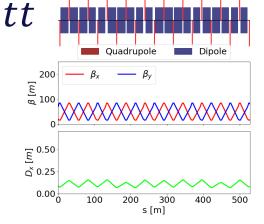
T. Charles et al., "Update on the Low Emittance Tuning Of the e+/e- Future Circular Collider," IPAC'21

T. Charles, "Optics correction studies", FCC week, 31st May 2022.

Timeline

FCC

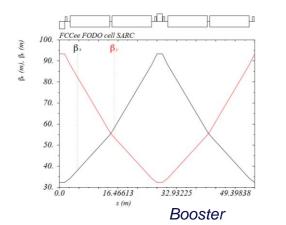

T. Raubenheimer


- Phase 1: Concept development → functional spec + integration studies. Develop 3D model for 'representative' arc half-cell.
- Phase 2: Engineering design of half-cell mock-up systems and delivery of 2D functional and fabrication drawings.
- Phase 3: Fabrication of half-cell mock-up with tunnel boundary with representative components and systems (non-operational).

T. Raubenheimer, "Accelerator Overview", FCC week, 30th May 2022.

M. Hofer, "Baseline optics and layout of the FCC-ee collider ring", FCC week, 31st May 2022.

- New configuration for arc optics with long ~100 m FODO cells at Z & W and short ~50 m cells at Zh and tt (more details in Tor's <u>talk</u> earlier this week)
- Total arc length 9.6 x 8 ~ 77 km

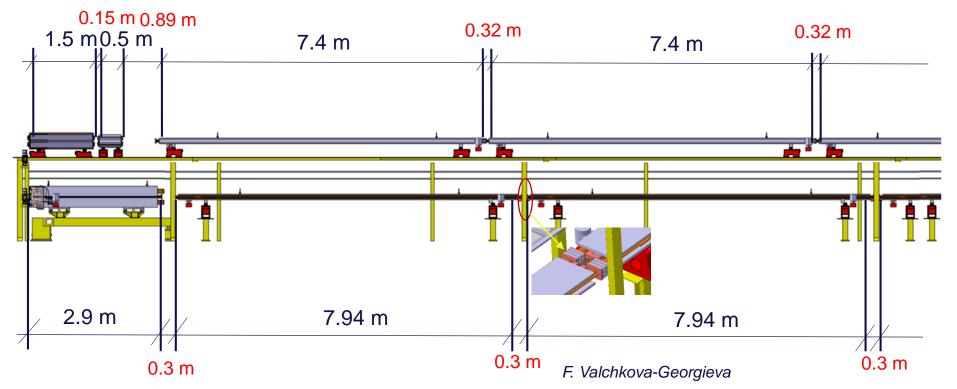

- FCC arcs are constructed from roughly 750 long cells or 1500 short cells
- Integration study (Phase I): to give also inputs on how to best evolve from long cell (low energy) to short cell

Arc cell configuration(s)

Arc half-cell

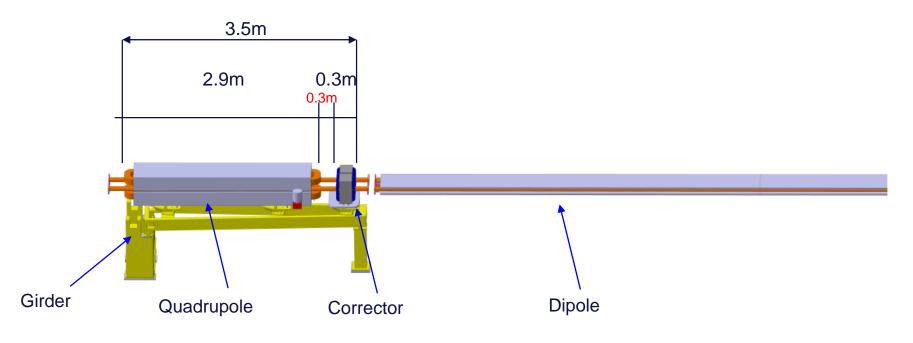
FCC

- 1 Quadrupole
- 0, 1, 2 **Sextupoles**
- Up to ~24 m Dipoles (segmented, variable length)

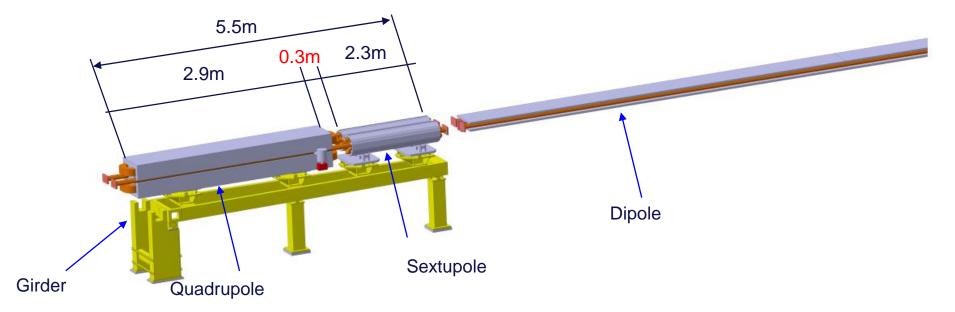

D: dipole, C): quadrupo	le, S: sextu	pole					
Spacing bet	ween magr	nets (m)	(A)	D	Q	D		
D-Q	0.3							
Q-S	0.3		(B)	D	Q	s	D	
S-S	0.1							
S-D	0.3		(C)	D	Q	s s	D	
Case	Arrange	Length of I	D					
(A)	Q-D	24.432						
(B)	Q-S-D	22.732						
(C)	Q-S-S-D	21.232						
Length (m)								
Q	2.9	twin aperture						
S	1.4	single aperture						

F. Valchkova-Georgieva

Arc cell configuration(s)

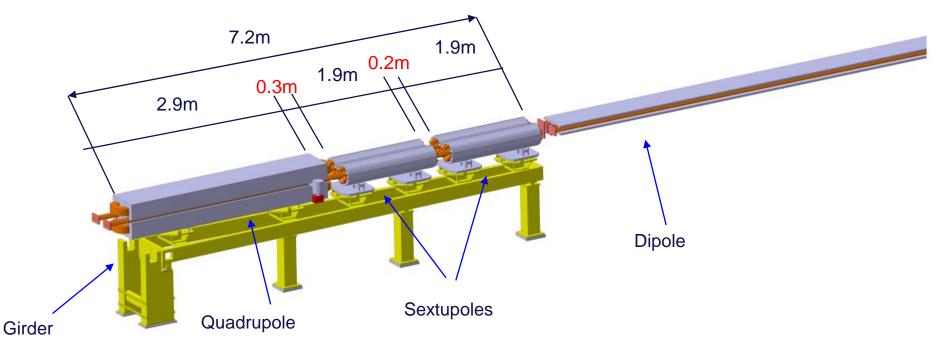

"Case A": quadrupole followed by 24.432 m dipole(s)

Side view


Arc cell configuration(s)

"Case A": 1 quadrupole followed by dipole(s)

Arc cell configuration(s)


<u>"Case B": 1 quadrupole + 1 sextupole, followed by dipole(s)</u>

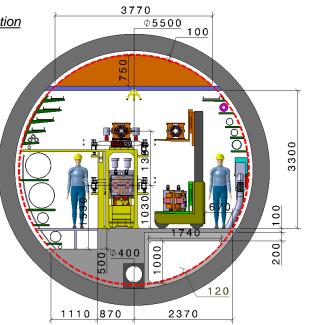
F. Valchkova-Georgieva

Arc cell configuration(s)

<u>"Case C": 1 quadrupole + 2 sextupoles, followed by dipole(s)</u>

Arc Half-Cell Mock-up Project (Phase I)

Mandate*

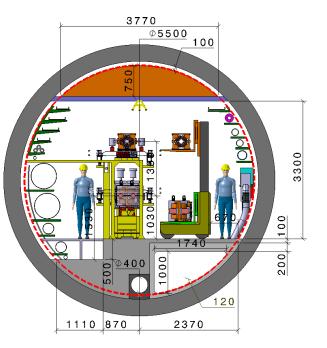

FCC

* Extract from T. Raubenheimer's <u>presentation</u> at the Arc Half-Cell Mock-up kickoff

- Develop an optimal integrated solution for the mechanical layout of an Arc Half-Cell considering machine performance, installation, operation, and maintenance, as well as necessary technical infrastructure in the tunnel.
- Identify the components of a representative Arc Half-Cell that will verify the key challenges.

Main deliverables

- 3D model + 2D cross-section drawings of arc region
- Compact report explaining main choices
- To be presented at FCCIS meeting in December '22



F. Valchkova-Georgieva

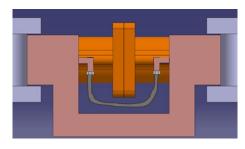
Collider Center

Needed studies and challenges (Phase I)

- Needed studies & challenges*
 - Horizontal separation of the e+ and e- rings in the arcs
 - Vertical placement / separation between collider and booster (and: is vertical superposition the only solution?)



* More detailed list & Project structure in T. Raubenheimer's <u>presentation</u> at the Arc Half-Cell Mock-up kickoff


Needed studies and challenges (Phase I)

- Needed studies & challenges*
 - Horizontal separation of the e+ and e- rings in the arcs
 - Vertical placement / separation between collider and booster (and: is vertical superposition the only solution?)
 - Define preferred dipole length (and: continuity or separation between dipoles/busbars?)
 - Design interfaces between magnet and vacuum systems

D-D interface


F. Valchkova-Georgieva

See also presentations from J. Bauche, C. Garion (yesterday morning, Technology R&D session)

L=8, 12, ...?

Needed studies and challenges (Phase I) J. Bauche, C. Eriksson

- Needed studies & challenges*
 - Horizontal separation of the e+ and e- rings in the arcs
 - Vertical placement / separation between collider and booster (and: is vertical superposition the only solution?)
 - Define preferred dipole length (and: continuity or separation between dipoles/busbars?)
 - Design interfaces between magnet and vacuum systems (and: integration of correctors, beam instrumentation, ...)
 - Optimize the power & cooling connections for the magnets, vacuum, and beam diagnostics
 - Develop supporting system in line with installation and alignment procedures (*w. girder*)
 - And... booster elements!!!

350 mm beam separation

Date: 2016-08-06

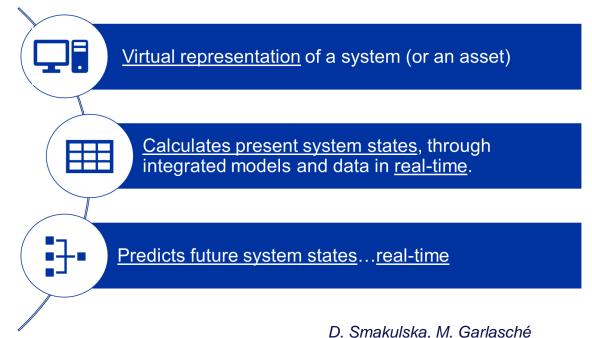
DRAFT

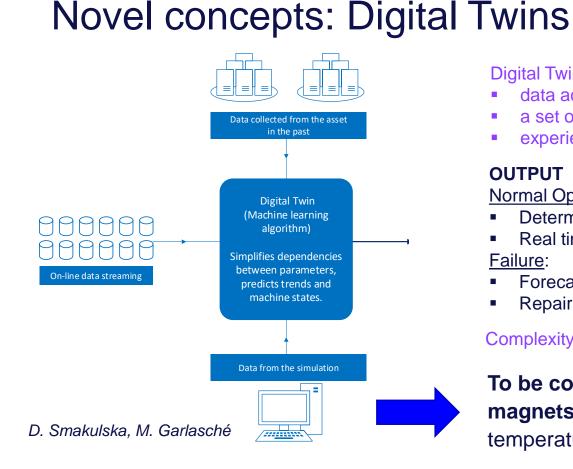
Design standards

- Quality standards for the design of components must be used at the earliest stage
- EN-MME guality manual available (EDMS) 1724368)
- Consider use of advanced materials (e.g. polymer concrete girder)
- To be linked/integrated with guidelines fo robot-friendly design (from Remote maintenance code of practice*)

*see M. Di Castro, "Code of practice for roboticfriendly design", 2nd Coordination of FCC Technology R&D programme meeting.

Easier remote or hands-on manipulation than chain-type connection





Novel concepts: Digital Twins

What is a Digital Twin?

See also the interesting presentations from yesterday afternoon on alignment, vibrations (FCC-ee afternoon session)

Digital Twin IS MORE than just

- data acquisition & monitoring
- a set of simulations
- experience from historical

OUTPUT

Normal Operation:

- Determine system state through data acquisition
- Real time, ALSO for parameters not directly acquired Failure:
- Forecast system state, real time interpretation
- Repair scenarios: real time analysis, system-wide

Complexity of the system is tailored to the specific needs

To be considered for mock-up girder and **magnets**: displacements, vibrations, strains, temperature, etc.

Conclusions

FCC

- The design and construction of a mock-up of an arc half-cell of the FCC-ee is proposed, in order to investigate aspects such as fabrication techniques, integration, installation, assembly, transport, maintenance.
- The project is divided into three phases:
 - Phase I (end of 2022) focuses on the integration studies of the arc configuration and the interfaces between its systems
 - Phase II (2023-2024) will tackle the engineering design of each element
 - Phase III (2024-2025) will involve fabrication and assembling steps
- Concepts such as robot-friendly systems and digital twins must be taken into consideration already during the early stage of the design.
- Strong interaction and feedback from Accelerator and Infrastructure Pillars, and in particular with Integration, Technology R&D, Collider Ring Optics, Booster Ring, Geodesy and Survey, will be key
- Phase I has started, and a platform for discussion has been set (<u>https://indico.cern.ch/category/15513/</u>)

 -> contact us to discuss inputs and ideas!

Thank you for your attention.