#### PETRAIV. NEW DIMENSIONS

# **PETRA IV Girder**

**Design, Test, Logistics** 

Markus Hüning FCC Week, 02.06.2022

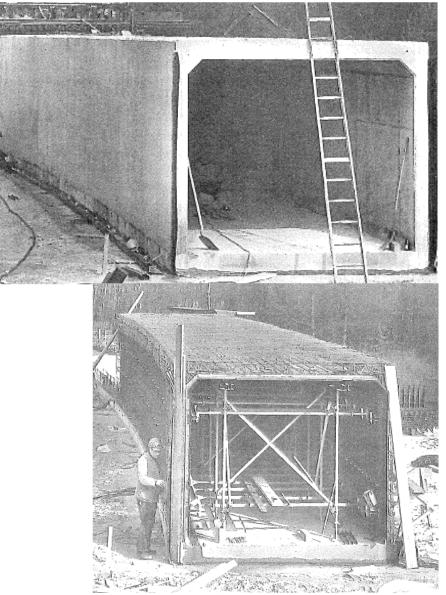


HELMHOLTZ

#### The PETRA IV Ring

- Circumference 2300m ٠ (approx double of other rings)
- Two types of octants, 9 cells each, 4 ٠ girders per cell (288 total)

**Re-use PETRA tunnel** ٠ (dates back to PETRA I)


|                                           | H6BA                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|-------------------------------------------|-------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Tunes $v_x, v_y$                          | 135.18, 86.27                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| Natural chrom. $\xi_x$ , $\xi_y$          | -233, -156                          | N Paul P. Ewald Hall                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| Mom. comp. $\alpha_C$                     | 3.3 10 <sup>-5</sup>                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| U <sub>0</sub>                            | 4.17 MeV                            | NW OCTA NE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| Standard ID section                       | 4.7 m - 4.9 m                       | Max von Laue<br>Hall                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| Hor. Emittance w/o IDs, zero current      | 20 pm                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| Hor. Emittance with IDs, zero current     | 20 pm                               | w PETRAIV.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| Rel. energy spread with IDs, zero current | 0.9 10 <sup>-3</sup>                | W PEIRAIV. SEE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| Beta at ID                                | $\beta_x = 2.2 m$ $\beta_x = 2.2 m$ | DESY IV A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| RF Voltage 1st / 3rd                      | 8 MV, 2.4 MV                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|                                           |                                     | Extension<br>West (PXW)<br>SW<br>OCTA<br>RF Section<br>Injection<br>Injection<br>Injection<br>Injection<br>Injection<br>Injection<br>Injection<br>Injection<br>Injection<br>Injection<br>Injection<br>Injection<br>Injection<br>Injection<br>Injection<br>Injection<br>Injection<br>Injection<br>Injection<br>Injection<br>Injection<br>Injection<br>Injection<br>Injection<br>Injection<br>Injection<br>Injection<br>Injection<br>Injection<br>Injection<br>Injection<br>Injection<br>Injection<br>Injection<br>Injection<br>Injection<br>Injection<br>Injection<br>Injection<br>Injection<br>Injection<br>Injection<br>Injection<br>Injection<br>Injection<br>Injection<br>Injection<br>Injection<br>Injection<br>Injection<br>Injection<br>Injection<br>Injection<br>Injection<br>Injection<br>Injection<br>Injection<br>Injection<br>Injection<br>Injection<br>Injection<br>Injection<br>Injection<br>Injection<br>Injection<br>Injection<br>Injection<br>Injection<br>Injection<br>Injection<br>Injection<br>Injection<br>Injection<br>Injection<br>Injection<br>Injection<br>Injection<br>Injection<br>Injection<br>Injection<br>Injection<br>Injection<br>Injection<br>Injection<br>Injection<br>Injection<br>Injection<br>Injection<br>Injection<br>Injection<br>Injection<br>Injection<br>Injection<br>Injection<br>Injection<br>Injection<br>Injection<br>Injection<br>Injection<br>Injection<br>Injection<br>Injection<br>Injection<br>Injection<br>Injection<br>Injection<br>Injection<br>Injection<br>Injection<br>Injection<br>Injection<br>Injection<br>Injection<br>Injection<br>Injection<br>Injection<br>Injection<br>Injection<br>Injection<br>Injection<br>Injection<br>Injection<br>Injection<br>Injection<br>Injection<br>Injection<br>Injection<br>Injection<br>Injection<br>Injection<br>Injection<br>Injection<br>Injection<br>Injection<br>Injection<br>Injection<br>Injection<br>Injection<br>Injection<br>Injection<br>Injection<br>Injection<br>Injection<br>Injection<br>Injection<br>Injection<br>Injection<br>Injection<br>Injection<br>Injection<br>Injection<br>Injection<br>Injection<br>Injection<br>Injection<br>Injection<br>Injection<br>Injection<br>Injection<br>Injection<br>Injection<br>Injection<br>Injection<br>Injection<br>Injection<br>Injection<br>Injection<br>Injection<br>Injection<br>Injection<br>Injection<br>Injection<br>Injection<br>Injection<br>Injection<br>Injection<br>Injection<br>Injection<br>Injection<br>Injection<br>Injection<br>Injection<br>Injection<br>Injection<br>Injection<br>Injection<br>Injection<br>Injection<br>Injection<br>Injection<br>Injection<br>Injection<br>Injection<br>Injection<br>Injection<br>Injection<br>Injection<br>Injection<br>Injection<br>Injection<br>Injeco |

S

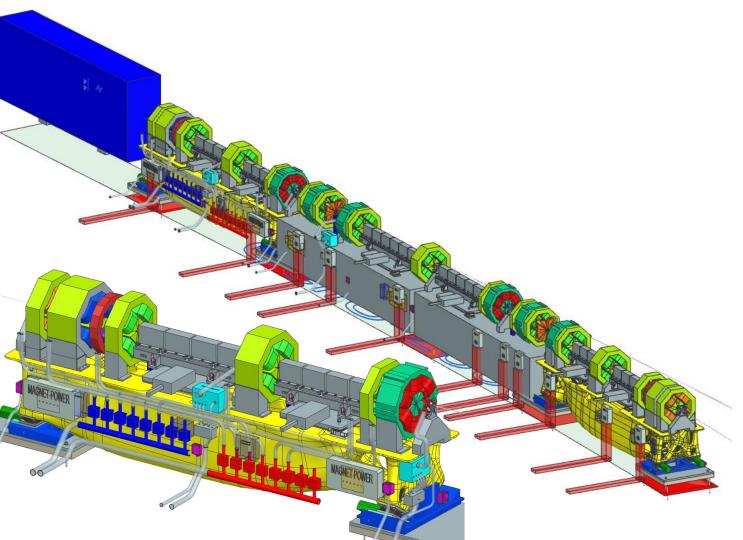


#### **PETRA I Tunnel unstable**

- The floor was prepared in long pieces, 5+25 cm thick.
- The tunnel was set on the floor in ~80 segments of 24 m each
- The tunnel walls are 20 cm thick, floor and ceiling 30 cm.
- The gaps between the segments are sealed with rubber.
- Today we se cracks at the joints and considerable movement between segments
  - Relative movements ~100µm (trans.) with extreme case ~700µm (entrance to extension hall)
- We decided to support the girders at their ends
  - movement of the tunnel will cause bends between girders no offsets



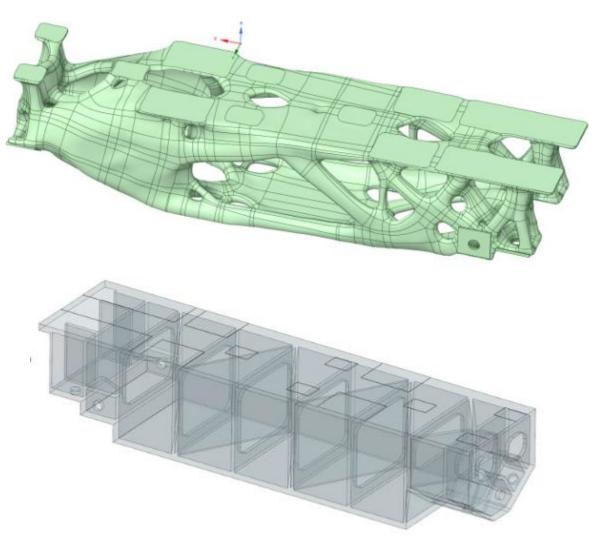



#### **Undulator cell with 4 girders**



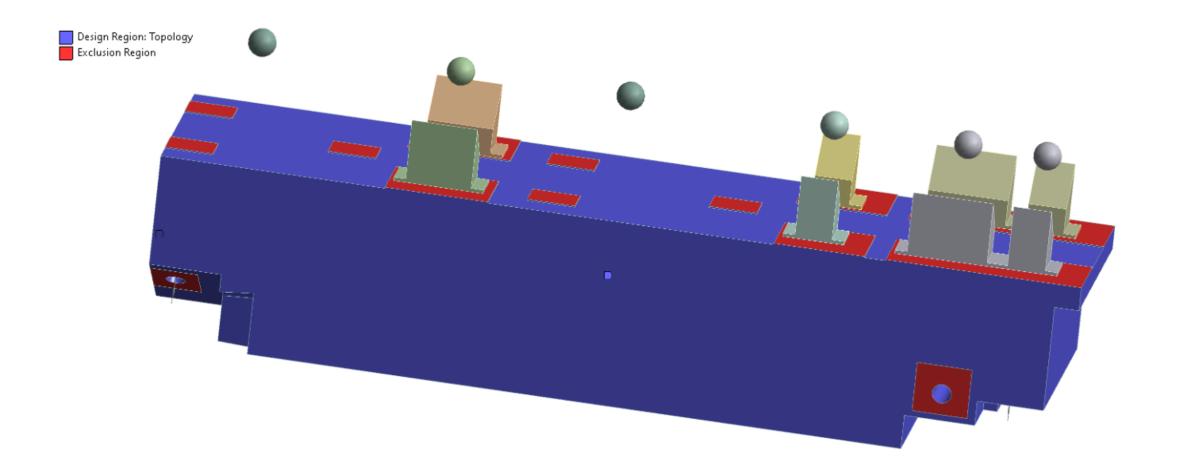
• Alignment tolerances

| Magnets                                        | $\Delta \mathbf{x}$ | $\Delta \mathbf{y}$ | ∆s     | roll     |  |
|------------------------------------------------|---------------------|---------------------|--------|----------|--|
| QD0, QF1, QD2, QF3, QD4,<br>QF5, QF6, QD7, QF8 | 30 µm               | 30 µm               | 300 µm | 200 µrad |  |
| SD SF                                          |                     | 30 µm               |        | 200 µrad |  |
| O1, O2                                         | 30 µm               | 30 µm               | 300 µm | 200 µrad |  |
| DLQ, DQ                                        | 30 µm               | 30 µm               | 300 µm | 200 µrad |  |
| Girders                                        | Δ <b>χ</b>          | $\Delta \mathbf{y}$ | ∆s     | roll     |  |
| all                                            | 100 µm              | 100 µm              | 500 µm | 200 µrad |  |
| BPM alignment                                  | Δ <b>χ</b>          | Δ <b>y</b>          | ∆s     | roll     |  |
|                                                | 500 µm              | 500 µm              | 500 µm | 200 µrad |  |


- First eigenmode above 50 Hz
- Support on movers (online adjustments)
- So far no online alignment measurement



## **Topology optimized Girder**




- With a given set of boundary conditions (loads, width, height, symmetry,...)
   optimize girder for eigenfrequencies, weight
- Call for tender for prototype(s) is out
  - 2 cast girders
    (2 materials with different hardness/damping)
  - 1 welded girder
- Expected cost of prototypes similar
- Eigenfrequencies (in theory) (52 resp. 46 Hz)

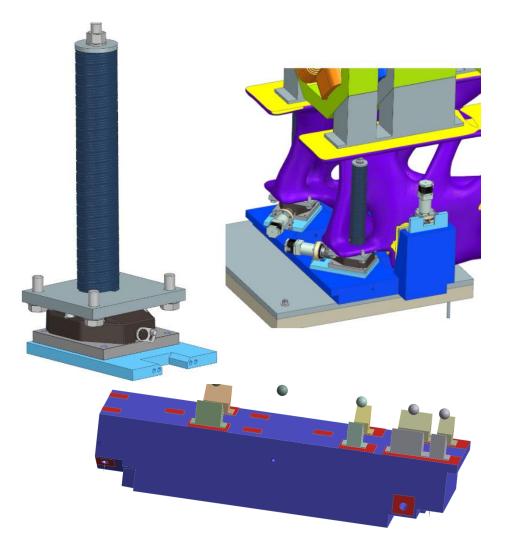


## **Topology Optimization**



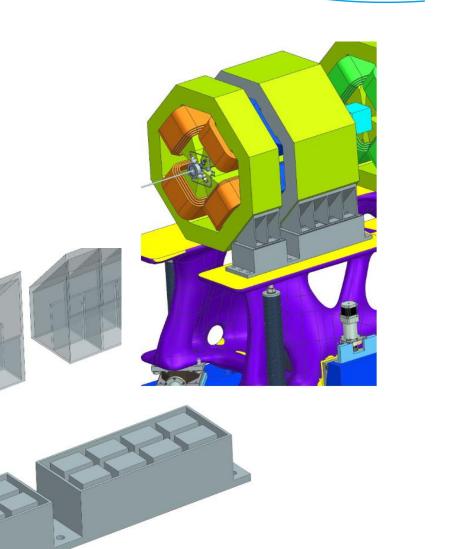


# Example Results






## **Girder Alignment**


- Use motorized levelling wedges for online alignment
- 6 drives per girder
- 3½ point support to avoid torsion within girder while maintaining stability





## Magnets fixed by gluing

- Alignment units used only during alignment process
  will be removed afterwards
- Magnet holders employ blades & sockets will be glued
- After curing no more movement (supposedly)
- Similar design employed in PETRA III (without removing alignment supports)



## **The PETRA III Solution**

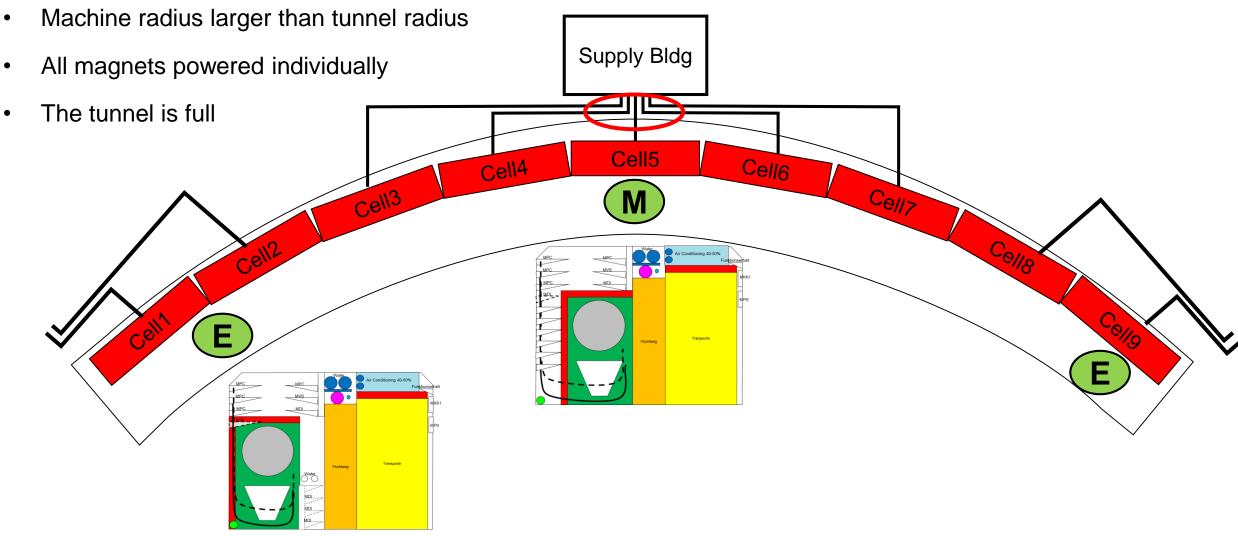


- Climatic hutch in experiment hall
- Fine alignment 4 days per girder, (overall time 21.7.-7.10.)
- Accuracy σ=22µm & σ=20µm from fiducialization
- Transport to final position one single craning
  - Suspend at same position as support points
  - No transport on ground (needed to test that for PETRA IV)



#### **Transport Tests with glued Magnets**



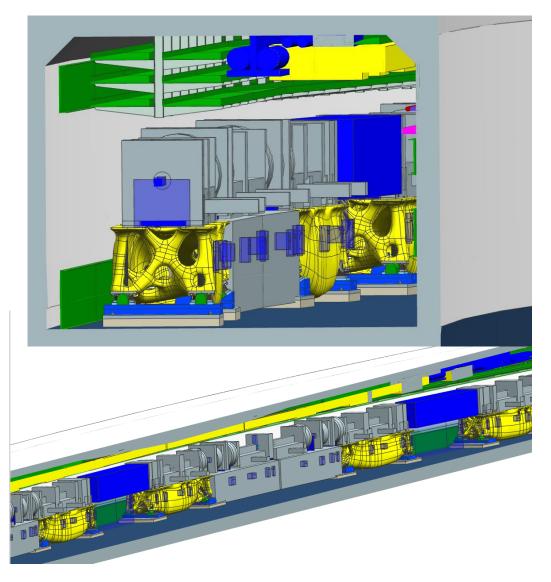

- Used a PETRA III girder (magnets larger and heavier)
- Tested moving the girder with ever increasing risk (acceleration)
  - Crane lifting
  - Crane transport
  - Truck transport on site (slow) flat road
  - Truck transport on site incl. Incline
  - Truck transport off site (normal speed)
  - Bumping
- So far alignment accuracy is maintained within an accuracy of 10µm (accuracy of measurement)



# **Space Restrictions in PETRA Tunnel**

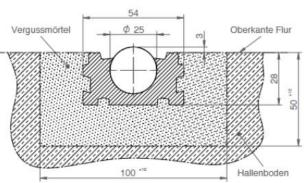


#### **One Arc in the old Tunnel**

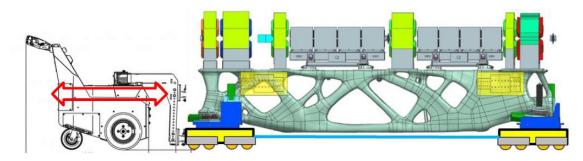



FCC Week | PETRA IV Girders | Markus Hüning 02.06.2022

### **Tight Space Restrictions**




- Machine (incl. Girders) must not be wider than 1m
- Girder vehicle (incl. Girder) must not be wider than 1.1m
- Cable trays in place before girders
- Gap above machine 20cm (if the magnets stay smaller than allotted space)

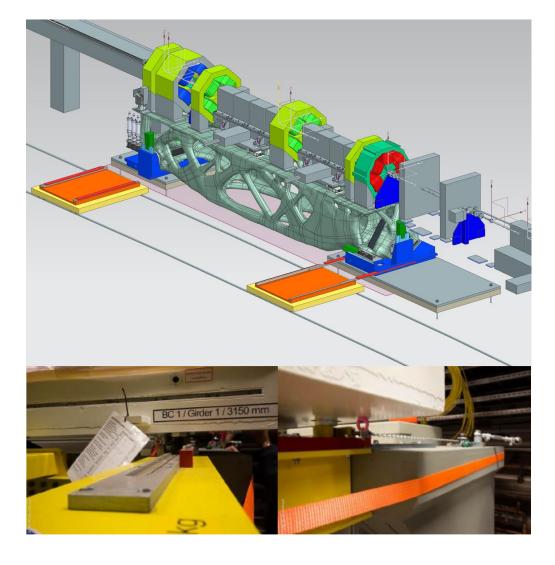



## **Transport Concept**

- Integrate a rail into tunnel floor
- Tendering for test installation underway
  - Check compatibility with old floor
  - Test bending of rails
- Expect the floor to bear load better than with dollies
- Directional stability is a given
- Investment is in the rails, vehicles are cheap

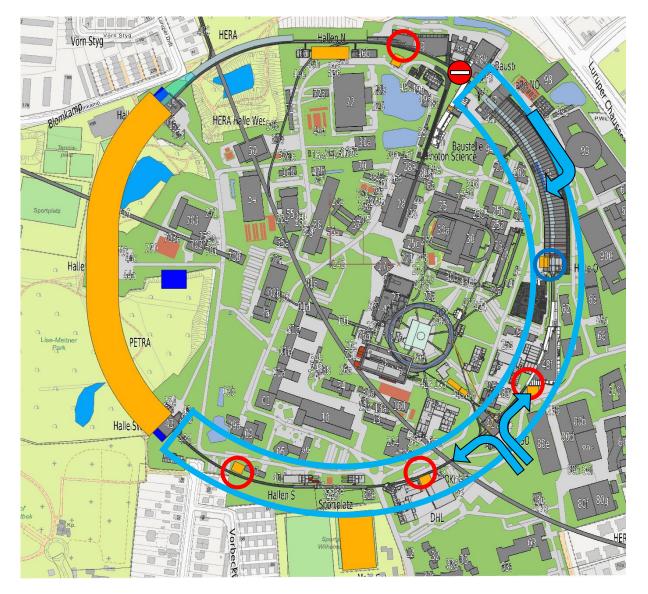








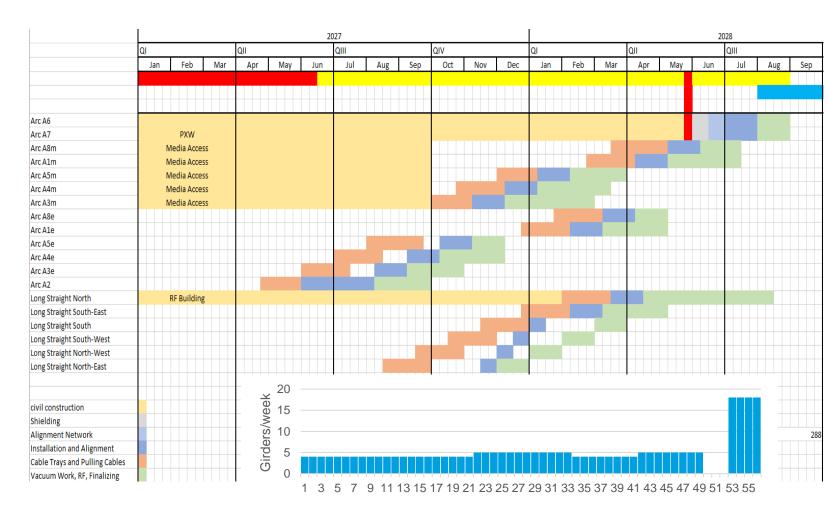

#### **Installation Procedure**




- Barely any lifting possible
- No space for counter-weights or supports
- Use the "egyptian method" for installation



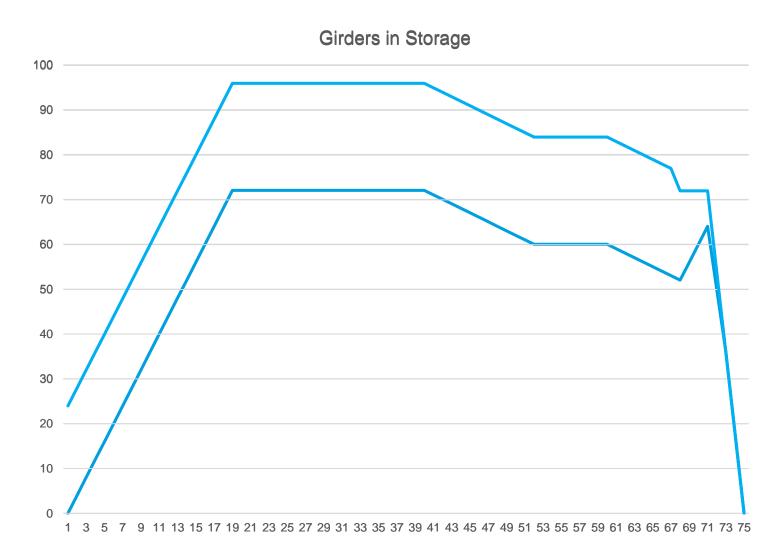
# Plan Installation around Boundary Conditions on Site PETRAIN


- <sup>1</sup>/<sub>2</sub> of the tunnel will be blocked by construction sites
- Need to wait for completion of 3 media access points
- Expect best accessibility through Max-von-Laue-Hall and hall SE
- Hall floor needs refurbishment in east and southeast halls  $\rightarrow$  to be completed early on



# Civil Construction of PXW dominates Installation Scheduler MENSIONS

Expect fairly even Installation Rate except for Rush at the End


- Tight installation window in PXW necessitaes minimization of installation steps
- Maximum pre-integration of girders
- Evaluate gains at further trades (cable-trees, electronic racks,...)



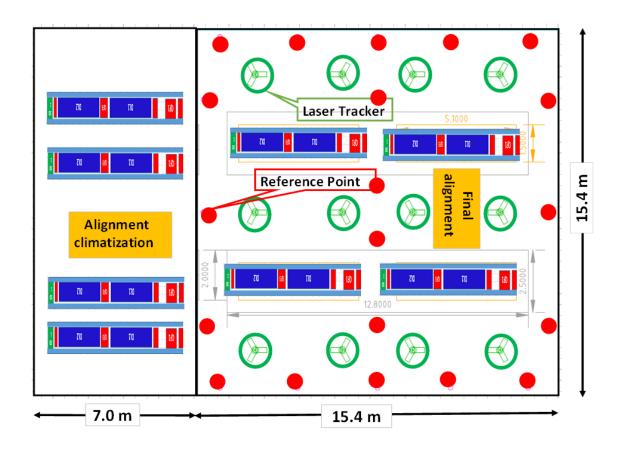
# Installation Scenario calls for Buffer of 72 Girders Minimerra IV

#### Assembly rate of 4 girders per week

- With assembly going until the very end a stock of 72 girders is (barely) sufficient
- Would need to re-stock before end
- Increasing the stock to 96 avoids refill
  - allows for or earlier end of production (additional manpower for final rush?)
  - Contingency for hick-ups
  - Installation directly out of alignment (fewer transports)



## **Girder Assembly Lines Layed out**

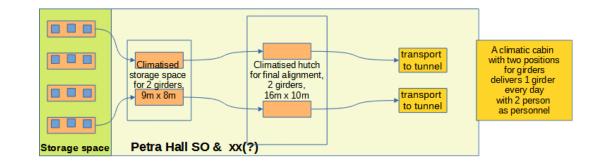

#### **Plan for 4 Assembly Lines**

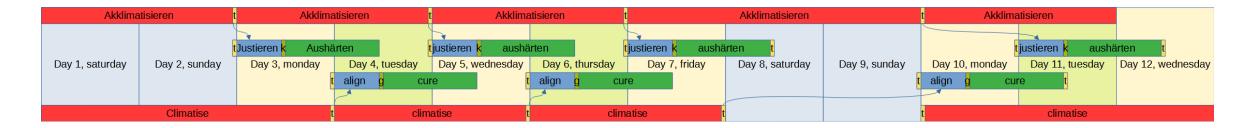
- One assembly line puts out 4 girders every 2nd week
- Two assembly lines just fit to the installation plan without margin
- Therefore a third line is foreseen
- A fourth line is reserved for DESY4 girders
- The hours listed are DESY estimates but agree summarily with ESRF-EBS experience

|       |           |                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                  |     |                                  | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |       | -      |
|-------|-----------|----------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------|-----|----------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------|--------|
|       | net insta |                                              | terere te essembl                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                  |     | Hours<br>4                       | <u> </u>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Hours | Days   |
|       |           | t of 4 girders from s<br>f alignment threads |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                  |     | 1,5                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | -     |        |
|       | lovement  | 1,5                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | -                |     |                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |       |        |
| 4.) N | lovement  | t of 6 DL magnets t                          | o the girders                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | <u>g.:</u>       |     | 2                                | ⊢≻                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | - 14  | 1,5    |
|       |           | nt of 1 magnet on th                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | utes)            |     |                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |       |        |
| 5.b)  | Moveme    | nt of 27 magnets or                          | n the girders                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                  |     | 5                                | ノ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |       |        |
|       |           | gnment of 33 magn                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                  |     | 24                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 24    | 3      |
|       |           | the 1 magnet (≈ 20                           | minutes)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                  |     |                                  | 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |       |        |
|       |           | of 27 magnets                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                  |     | 9                                | H                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |       | -      |
|       |           | e vacuum strings ir<br>I magnet (≈ 20 minu   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                  |     | 4                                | $\vdash$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | · 22  | 3      |
|       |           | i magnet (≈ 20 mint<br>27 magnets            | ites)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                  |     | 9                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |       |        |
|       |           | ing of cooling pipe                          | and connection of                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | cooling circuits |     | 8                                | $\prec$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |       |        |
|       |           | of cable trays and                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                  |     | 8                                | ╘                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | - 20  | 2,5    |
|       |           | nt of the 4 assemb                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | esting area      |     | 4                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |       | ,•     |
|       |           |                                              | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                  |     |                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |       |        |
|       |           |                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Su               | m = | 80                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 80    | 10     |
|       |           |                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                  |     | Unloading Area 10 m <sup>2</sup> | Man Internet for the second |       | 16.0 m |
|       |           | Cale for                                     | 4      4      4      4      4      4      4      4      4      4      4      4      4      4      4      4      4      4      4      4      4      4      4      4      4      4      4      4      4      4      4      4      4      4      4      4      4      4      4      4      4      4      4      4      4      4      4      4      4      4      4      4      4      4      4      4      4      4      4      4      4      4      4      4      4      4      4      4      4      4      4      4      4      4      4      4      4      4      4      4      4      4      4      4      4      4      4      4      4      4      4      4      4      4      4      4      4      4      4      4      4      4      4      4      4      4      4 |                  |     |                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |       |        |

#### **Precision Alignment performed in climatized Hutch**

- Hutch will be operated at the same temperature as the PETRA tunnel
- To reach the required 30µm alignment accuracy a number of strict requirements apply to the alignment hutch
- Sufficient width and stability required for precision measurement (10x10m<sup>2</sup> for single 5m girder)
- Antechamber for the girders to reach temperature equilibrium
- After the alignment magnets will be fixed with glue
- Transports only with crane or special vehicles, support-points always the same as in tunnel




#### FCC Week | PETRA IV Girders | Markus Hüning 02.06.2022

### **Alignment Hutch Throughput**

- For PETRA IV a throughput of 5 girders per week is sufficient
- The setup with 4 measurement stands provides sufficiently reserve for 8 girders per week with a team of 2 surveyors
- The procedure for the individual girder takes 3.5days out of which 3 days consist of waiting
- The procedure as such was successfully applied for PETRA III (with single position)







# Functional Layout of Girder Assembly Building (GAB)

To be built to house major parts of the preparation and assembly of machine components

- A hall of 54\*88m<sup>2</sup> is planned for the GAB
- The girder assembly and storage was compressed to fit into one segment (crane rail) of the hall
- Second segment assigned to
  - Vacuum clean room
  - String pre-assembly
  - Diagnostic components
  - Front-end assembly

|                                  |   |                                                                                                                      |    |    |      |    |    |                                                               |        |                                                                                                               |                  |               |                                       |                 |           |    |    |    | -  |                          |
|----------------------------------|---|----------------------------------------------------------------------------------------------------------------------|----|----|------|----|----|---------------------------------------------------------------|--------|---------------------------------------------------------------------------------------------------------------|------------------|---------------|---------------------------------------|-----------------|-----------|----|----|----|----|--------------------------|
|                                  |   | 5                                                                                                                    | 10 | 1! | 5 20 | 25 | 30 | 35                                                            | 40     | 45                                                                                                            | 50               | 55            | 60                                    | 65              | 70        | 75 | 80 | 85 | 90 |                          |
| 5<br>10<br>15<br>20<br>25        |   | 7.)    6.) 566 m^2      271m^2    (Front Ends,<br>Assemb. & Prepar.)      (24.6    (24.6 * 23)                       |    |    |      |    |    |                                                               | 5      | 4.) 3.) 140 2.) 10<br>80 (10*14) 10*10<br>m^2 Rack-Ass Pre-C<br>5.) 372 m^2 (31*12)<br>(Pre-Test +Assembling) |                  |               |                                       |                 | 100<br>10 |    |    |    |    | 14.<br>5*<br>10<br>W 0.7 |
| 30<br>35<br>40<br>45<br>50<br>55 |   | 8.) 360 m^2<br>(16*22.6)<br>Alignment &<br>Acclimat.<br>9.) 450 m^2<br>(20*22.5)<br>Girder Storage I<br>(72 Girders) |    |    |      |    |    | 10.) 50<br>m^2<br>11.) 14<br>m^2<br>(9*16)<br>Power<br>Coolin | 4<br>& | Truck r                                                                                                       | Girder<br>13.) 5 | Stora<br>44 m | 2 (34*6<br>ge (21<br>^2 (34<br>g Line | Girder<br>(*16) | -         |    |    |    |    |                          |
| 60                               | - |                                                                                                                      |    |    |      |    |    |                                                               | - 8    | 38.0 m                                                                                                        |                  |               |                                       |                 |           |    |    |    |    |                          |

### **Conclusion and Outlook**



- PETRA IV demand on alignment precision can be met with pre-fabricated girders
- Sufficient buffer storage can help support tight installation schedule
- Pre-integration of girders has to be more thorough than in PETRA III
- First tests concluded with promising results
- Prototyping underway

# Thank you

#### Contact

**DESY.** Deutsches Elektronen-Synchrotron Markus Hüning markus.huening(at)desy.de

www.desy.de