

First Steps Towards a Semi-Analytical Description of Beam-Beam Driven Instabilities in the FCC-ee

universite PARIS-SACLAY

Nikolaos NIKOLOPOULOS^{a,b}, Xavier BUFFAT^a, Angeles FAUS-GOLFE^b

^a Beams Department, CERN, Espl. des Particules 1, Meyrin, 1211, Geneva, Switzerland ^b IJCLab, University of Paris-Saclay, 15 Rue Georges Clemenceau, Orsay, 91400, France

The Circulant Matrix Model

The circulant matrix model (CMM) is based on the decomposition of the longitudinal phase space distribution

$$\Psi(R), \quad R = \sqrt{\left(\frac{s}{\sigma_s}\right)^2 + \left(\frac{\delta}{\sigma_\delta}\right)^2}, \quad (1)$$

 σ_s and σ_δ being the RMS bunch length and momentum deviation.

Figure 1: Discretisation of the longitudinal phase space in the CMM (source: [1]).

Beam-Beam Kick Matrix

The coupling between two elements of the distribution by the Beam Beam force, with two transverse planes, is given by:

$$C_{\text{BB},0} = \begin{pmatrix} 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ -\frac{\partial \Delta x'_{coh}}{\partial x} & 1 & -\frac{\partial \Delta x'_{coh}}{\partial y} & 0 & \frac{\partial \Delta x'_{coh}}{\partial x} & 0 & \frac{\partial \Delta x'_{coh}}{\partial y} & 0 \\ 0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 & 0 \\ -\frac{\partial \Delta y'_{coh}}{\partial x} & 0 & -\frac{\partial \Delta y'_{coh}}{\partial y} & 1 & \frac{\partial \Delta y'_{coh}}{\partial x} & 0 & \frac{\partial \Delta y'_{coh}}{\partial y} & 0 \\ 0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 \\ \frac{\partial \Delta x'_{coh}}{\partial x} & 0 & \frac{\partial \Delta x'_{coh}}{\partial y} & 0 & -\frac{\partial \Delta x'_{coh}}{\partial x} & 1 & -\frac{\partial \Delta x'_{coh}}{\partial y} & 0 \\ 0 & 0 & 0 & 0 & 0 & 1 & -\frac{\partial \Delta x'_{coh}}{\partial x} & 0 & \frac{\partial \Delta y'_{coh}}{\partial y} & 0 \\ \frac{\partial \Delta y'_{coh}}{\partial x} & 0 & \frac{\partial \Delta y'_{coh}}{\partial y} & 0 & -\frac{\partial \Delta y'_{coh}}{\partial x} & 0 & -\frac{\partial \Delta y'_{coh}}{\partial y} & 1 \end{pmatrix}$$

where all derivatives are evaluated at the closed orbit, (x_0, y_0) and are given by the 2 dimensional extension:

$$\Delta x'_{coh}(x,y) \approx \Delta x'_{coh} + \frac{\partial \Delta x'_{coh}}{\partial x} \Delta x + \frac{\partial \Delta x'_{coh}}{\partial y} \Delta y, \quad (2)$$

$$\Delta y'_{coh}(x,y) \approx \Delta y'_{coh} + \frac{\partial \Delta y'_{coh}}{\partial x} \Delta x + \frac{\partial \Delta y'_{coh}}{\partial y} \Delta y,$$
 (3)

where the bold quantities are being evaluated at (x_0, y_0) .

The beam-beam kick matrix was developed for VEPP and LHC with round beams and crossing angle, but it needs to be extended to flat beams.

Mode Coupling Instabilities

The coherent beam-beam force modifies the frequency of head-tail modes and can result in mode coupling instabilities (source: [2]).

Figure 2: $\sigma_s = 2.54 [\text{mm}], \ \beta_x^* = \beta_y^* = 1 [\text{m}] \text{ and } \epsilon_N (= \epsilon_x) = 1.46 [\text{nm}].$ The colour-bar corresponds to the imaginary part of the eigenvalues.

The linearized **beam parameter** for the case of the round beam is given by: $\xi = \frac{Nr_e}{4\pi\epsilon_N}$, where N is the bunch population, r_e is the classical radius and ϵ_N is the normalised emittance.

Round Beam vs Flat Beam Case

The total beam-beam kick called, **coherent kick**, is obtained by integration of the single particle kicks over the beam distribution $\Psi(x,y)$ (7). For a **Bi-Gaussian** distribution the explicit form for the **incoherent kick**, i.e. the force experienced by a single particle, is derived from the well known Basseti-Erskine formula [3] [†]

$$\Delta^{\mathbf{F}}x'(x,y) = \frac{Nr_e}{\gamma_r} \sqrt{\frac{2\pi}{\sigma_x^2 - \sigma_y^2}} \operatorname{Im} \left\{ w \left(\frac{x + iy}{\sqrt{2(\sigma_x^2 - \sigma_y^2)}} \right) - \exp\left(-\frac{x^2}{2\sigma_x^2} - \frac{y^2}{2\sigma_y^2} \right) w \left(\frac{\frac{\sigma_y}{\sigma_x} x + i\frac{\sigma_x}{\sigma_y} y}{\sqrt{2(\sigma_x^2 - \sigma_y^2)}} \right) \right\}, \tag{4}$$

-0.5

-1.0

-1.5

where w is the Fadeeva complex error function: $w(z) = \exp(-z^2) \left[1 + \frac{2i}{\sqrt{\pi}} \int_0^z \exp(\zeta^2) d\zeta \right]$. The kick felt by a test particle assuming a **round** Gaussian distribution is:

$$\Delta^{\mathbf{R}} x'(x,y) = -\frac{2r_0 N}{\gamma_r} \frac{x}{r^2} \left(1 - \exp\left(-\frac{r^2}{2\sigma^2}\right) \right), \tag{5}$$

$$\Delta^{\mathbf{R}} x'_{coh}(x,y) = -\frac{2r_0 N}{\gamma_r} \frac{x}{r^2} \left(1 - \exp\left(-\frac{r^2}{4\sigma^2}\right) \right), \quad r = \sqrt{x^2 + y^2}, \quad (6)$$

$$\Delta^{\mathbf{F}} x'_{coh}(x,y) = \int_{-\infty}^{\infty} \Delta x'(X,Y) \Psi(X - x, Y - y) dX dY.$$

Figure 3: Comparison between the incoherent and coherent beam–beam kick for **round** Gaussian beam distributions.

The superscripts ^R and ^F correspond to the **round** and **flat** cases respectively.

Figure 4: Comparison between the incoherent and coherent beam–beam kick for flat Gaussian beam distributions.

 $\frac{x}{\sigma x}$

-2

Summary

Completed:

- ✓ Integrated the coherent force numerically. Next steps:
- ☐ Attempt for an analytical solution.☐ Implement it in the BimBim code.
 - Implement it in the **BimBim** code Study mode coupling instabilities.

References

- [1] X. Buffat, "Transverse beams stability studies at the Large Hadron Collider," Presented 30 Jan 2015, Jan. 2015. [Online]. Available: https://cds.cern.ch/record/1987672.
- [2] S. White, X. Buffat, N. Mounet, and T. Pieloni, "Transverse mode coupling instability of colliding beams," *Phys. Rev. ST Accel. Beams*, vol. 17, p. 041 002, 4 Apr. 2014. DOI: 10.1103/PhysRevSTAB.17.041002. [Online]. Available: https://link.aps.org/doi/10.1103/PhysRevSTAB.17.041002.
- M. Bassetti and G. A. Erskine, "Closed expression for the electrical field of a two-dimensional Gaussian charge," CERN, Geneva, Tech. Rep., 1980. [Online]. Available: https://cds.cern.ch/record/122227.