

Radiation Load Studies for the FCC-ee Positron Source with a SC Matching Device

Barbara Humann (SY-STI-BMI) Supervisor: Anton Lechner FCC-Week 2022 (31/05/2022)

Acknowledgments to B. Auchmann, I. Chaikovska, J. Kosse, Y. Zhao,...

Agenda

1. Motivation

2. Layout & Parameters

3. Instantaneous Effects

4. Long Term Radiation Effects

5. Outlook & Conclusion

Concept and layout

SuperKEKB Positron Source: Same principle, similar layout

FCC-ee Injector Design Coordination meeting 08: https://indico.cern.ch/event/1133621/contributions/4756873/attachments/2418347/4139305/FCC%20injector%20schematic%20layout%2031032022.pdf

FCC-ee:

 Superconducting (HTS) matching device considered as one of the design options, to achieve higher magnetic fields → higher positron yield

- Similar source will be implemented at PSI in the P³ experiment first, before it will be implemented in FCC-ee

- **Goal** of the simulations: are the radiation levels on the target and the **superconducting coils feasible**? Any unexpected **showstoppers**?

Flux concentrator

Solenoid

Topic of the tropic of the tr

FCC Week 2021 (I. Chaikovska): https://indico.cern.ch/event/995850/contributions/4413337/attachments/2273779/3862159/FCCweek2021_positrons30062021.pd

Positron source

Physical background – 2 underlying principles

1. Bremsstrahlung

A charged particle that is slowing down emits electromagnetic radiation (a photon) → e- is deviated in nucleus of atom

2. Pair production

In the field of a nucleus, a photon can produce an electron-positron pair, if its energy is >1.022MeV (combined rest energy of an electron and positron)

This process scales as $\sigma \propto Z^2 \rightarrow$ high Z material favourable for positron target where a high positron yield should be achieved.

6GeV incoming e- beam \rightarrow bremsstrahlung produces photon \rightarrow photon undergoes pair production \rightarrow e- and e+ (and photons) leave the target

https://indico.cern.ch/event/817601/attachments/1876118/3107117/25_07_2019_acceleratorbeamlossesl.pdf

Geometry overview

- Two (slightly) different geometries studied
 - Version 6.1 identical to the P³
 positron source geometry, apart from the shielding
 - At FCC-ee a slightly larger geometry can be used, which is tested in Version 8.2
- Similar components, but different radial and longitudinal positions

Geometry – technical details

Radial Coil Position	8.2cm	6.1cm
Shielding thickness	1.8cm	1.4cm
Target radial size	4.4cm	1.8cm
Target position in z	3.1cm	2cm

Part	Material
Target	W-26Re
Coils	HTS (YBCO)
Cryostat	Stainless steel
Shielding	Inermet180®
Support	Aluminum (grey)
Support	Copper (brown)

Parameters for the FCC-ee positron target

- Instantaneous effects
 - Total deposited power (in W)
 - Determines the heat load on the elements
 - Power density (in mW/cm³)
 - Quenching of SC if it is too high
- Long term radiation effects
 - Dose (in MGy)
 - Deterioration of the material, especially organic materials
 - Displacement per atom (DPA)
 - Structural damage of inorganic materials
 - Dimensionless number proportional to the number of Frenkel pairs

Electron drive beam	6GeV
Beam size	0.5mm RMS
Repetition rate	200Hz
Bunches per pulse	2
e- charge per bunch	1.43nC
Beam Power	3.43kW
Target length	$5X_0 = 17.5$ mm

Filling scheme of collider:

2.4% filling from scratch

97.6% at top-up injection with lower bunch charge

"Top-up injection":

e-/e+ are constantly lost in collider ring, so collider is constantly refilled with particles (not possible/needed for hadron machines)

Power on different elements

- Around 25% of e- beam power (3.43kW) are dissipated in the target
 - Higher heat load for V8.2, due to bigger radial size → self induced shielding effect
- Shielding stronger impacted due to position closer to the beam in V6.1
 - Thermo-mechanical studies needed Stationary target not excluded
- Total: around 2.3-2.5kW (3.43kW beam power) escaping the geometry
 → impacting RF? Shielding needed?
- Of the 2.3-2.5kW escaping power, 1.98kW is carried by electrons and photons

	V8.2	V6.1
Target	906W	869W
Shielding	69W	209W
Cryostat and coil support	3.3W	11.8W
Coils (1-5)	0.09-0.18W	0.27-1.25W
Total	980W	1126W

Up to 21kW/cm3 at target exit face (values are similar for both cases)

Zoom on target

31/05/2022

FCC Week 2022

Power density on coils

- Position further outside reduces the deposited power by an order of magnitude
- Gradient of deposited power per coil is strong → favorable for heat transport → considered safe

Target position matters →
must be taken in account for
the decision for the following ¬
RF structure
(L Band or S Band)

Dose per year of z operation on coils

Remark: long term radiation effects (dose, DPA) are given for one year of Z operation. Conservative assumption is that values will be ~10x higher for operational time of FCC-ee.

DPA on coils and target per year of Z operation

Up to 1E-4 DPA per year → full operational time: ~1E-3 DPA

TARGET

Up to 3DPA/year on target → high value considering em. beam

Limits for total ionizing dose & DPA

Dose:

- Limits in low temperature superconductors (Nb3Sn, NbTi,...): ~30MGy → due to organic insulation, not SC itself
- HTS coils do not have organic insulation
- High temperature SC in literature: many papers on displacement damage (neutron irradiation), but not much on ionizing dose (gamma irradiation)
- Shall one propose gamma irradiation tests of HTS coils within FCC/CHART?

DPA:

- High values despite an electron beam
- Not negligible anymore for the coils over full lifetime if coil aperture is at 6.1cm (10⁻³DPA) → further shielding studies ongoing

Summary

- So far, no showstoppers found that prevent a superconducting matching device
- Still work to do, to optimize the situation
 - Target position along z matters
 - Coil position and shielding thickness optimization ongoing
 - Find limits for the dose of high temperature SC

 Outlook: Energy deposition in RF structure downstream and evaluation if mask is needed

