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• High energy and intensity => Typically, very high stored beam energy

• Need superconducting magnets to reach sufficiently high magnetic fields
• Cooled to cryogenic temperatures
• Sensitive to heating => Small temperature rise causes a quench (loss of 

superconductivity)

• Beam losses are unavoidable during regular operation
• Even a tiny loss could cause a quench, or even material damage

• Need collimation system to safely intercept and attenuate these losses

Collimation in high-energy colliders
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Collimation challenge: LHC vs FCC

Cold aperture, superconductors

Beam: 680 MJ
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HL-LHC

Loss power up to ~1 MW

Quench limit 

~ 30 W/m

Cold aperture, superconductors

Beam: 8.3 GJ
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FCC-hh

Loss power up to 11.6 MW

Quench limit 

~ 100 W/m

Needed loss attenuation: factor ~3×104 Needed loss attenuation: factor ~105
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How much is 8.3 GJ? 

0.6 MJ

LHC: 362 MJ - kinetic energy of 

TGV train cruising at 155 km/h

FCC-hh: 8.3 GJ – kinetic energy of 

Airbus A380 (empty) cruising at 880 km/h

FCC-hh beams are highly destructive!!
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• The following few slides are a 
summary of previous studies for CDR, 
references:
• R Bruce et al 2019 J. Phys.: Conf. Ser. 1350 012009

• Previous FCC week talks, FCC collimation meetings

• Long CDR (not yet published)

• Separate betatron (PJ) and 
momentum cleaning (PF)

• The FCC-hh collimation system is a 
scaled up version of the HL-LHC/LHC 
system (NIM, A 894 (2018) 96-106)

FCC-hh collimation layout: CDR version 

https://iopscience.iop.org/article/10.1088/1742-6596/1350/1/012009
https://indico.cern.ch/category/9242/
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Optics of collimation insertions: CDR version

IRJ (Betatron cleaning) IRF (Momentum cleaning)

• Scaled β-functions and insertion length by factor 5 from the LHC → 2.8 km insertion length

• Increased dispersion in momentum cleaning insertion
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FCC-hh multi-stage collimation system
• As in the LHC, using a multi-stage system with primary and secondary collimators, shower 

absorbers, dispersion suppressor (DS) collimators 

• DS collimators are placed in the cold region, in between dipoles where dispersion has risen

• Similar layout as the LHC, but some modifications: DS collimators in many insertions, extra 

shower absorbers in extraction insertion, removal of skew primary

DS collimator
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Collimation performance – FCC-hh protons
• Collimation performance checked with 

tracking studies using the SixTrack-

FLUKA coupling and dedicated FLUKA 

simulations of exposed magnets

• Collimation system is extremely 

efficient at absorbing horizontal and 

vertical losses – almost no losses on 

cold machine aperture, thanks to 

dispersion suppressor collimators

Collision, 50 TeV

Most loaded cold magnet

J. Molson

M. Varasteh
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FCC collimator design
• Assuming LHC-type collimators, with some design 

modifications, following iterative simulations of 

tracking, energy deposition and thermo-mechanical 

response 

• Materials 

• Primary collimators, and most loaded secondary 

collimator made of carbon-fiber-composite 

(CFC) for maximum robustness

• Remaining secondary collimators in MoGr with 

5 μm Mo coating for a good compromise 

between impedance and robustness

• Collimators would survive design losses in 

simulations, but some challenges remain: high 

temperature leading to potential outgassing, high 

deflection, load on cooling pipes

Horizontal primary

M. Varasteh

G. Gobbi, M. Pasquali
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Updates since CDR
• Tunnel layout updated – see talk M. Giovannozzi

• Need to revisit optics and layout of the whole ring

• Symmetric 8-point layout, ring circumference decreased from 97.7 km to 91.1 km

• Betatron collimation moved to shorter insertion: 2.1 km instead of 2.8 km

• Momentum collimation in longer insertion: 2.1 km instead of 1.4 km

Injection
Injection

transfer lines proposed to be 
installed inside FCC-hh ring tunnel

Beam dump

Betatron collimationMomentum
collimation

RF

CDR
2022
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Updates to FCC-hh ring
• New layout and optics 

under development – work 

in progress, but first 

results available (T. 

Risselada)

• Details shown in talk 

by M. Giovannozzi

• Inserted collimators similar 

to LHC layout, including 

betatron and momentum 

collimation, tertiary 

collimators at experiments

• Some collimators still 

to be implemented (at 

beam dump, physics 

debris…) IRA IRB IRD IRF IRG IRH IRJ IRL
exp exp exp expcollim. collim.dump RF
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Updates to betatron collimation layout

• Scaling the original LHC collimation 

optics to new insertion lengths 

(T. Risselada)

• Similar collimator layout as LHC, but 

including 3 dispersion suppressor 

collimators as CDR-version of FCC-

hh

• Insertion length and beta functions 

scaled by a factor ~4 compared to the 

LHC

• Smallest collimator half gap (vertical 

primary) around 0.8 mm 

• Compare: ~1mm in LHC

IRF
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Momentum collimation

• For momentum collimation, LHC 

scaling used as starting point

• First implementation of optics 

and layout available 

• Features high dispersion at 

primary collimator to give 

flexibility and independence 

between betatron and 

momentum cuts

• DS collimators added

IRH
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• Dogleg changes the distance between the beams in collimation insertion

• Separate primary beam from neutrals.

• Minimise flux of neutrals on the first superconducting magnet on right side of IP

• Needed separation depends on geometry of insertion

• CDR layout: dogleg scaled from the LHC

• New version: dogleg geometry worked out based on actual geometry in IRH

• 290 mm separation proposed (compare 250 mm in the arc)

• To be confirmed with energy deposition studies

Optimization of doglegs

M. Giovannozzi
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• Two pairs (horizontal-

vertical) tertiary 

collimators on incoming 

beam

• Two dispersion 

suppressor collimators 

on outgoing beam

• Physics debris 

collimators still to be 

implemented

Collimation in experimental insertions

IRG



19

Updates to aperture model
• A detailed aperture model 

around the ring is crucial 

for collimation studies

• First implementation of 

new aperture model, 

based on mapping from 

CDR lattice (A. Abramov)

• Including main 

magnets and 

collimators in insertion 

regions and arcs

• To be refined in future 

iterations

Full ring

A. Abramov
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Aperture model in insertions
• Apertures mapped from similar elements in 

CDR lattice – to be refined in future 

iterations

IRF (betatron collimation)

A. Abramov

IRH (momentum collimation)

IRG (experiment)

Preliminary result
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Simulations of collimation performance

• Collimation performance simulated for 

latest version of FCC-hh using the 

SixTrack-FLUKA coupling

• Magnetic tracking using SixTrack, 

particle-matter interactions in FLUKA

• Simulation assumptions

• 1 μm impact parameter of generic halo 

on primary collimator – not simulating 

diffusion bringing halo onto collimators

• Same collimator settings in σ and 

materials as in CDR
Main beam

Impact parameter
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Simulated performance

• Generally very good protection of 

the ring, losses localized on 

betatron collimation system

• Rather high losses on tertiary 

collimators, with downstream 

leakage to cold magnets

• Potentially problematic, to be 

followed up in future iterations 

Horizontal halo, beam 1, 50 TeV

Preliminary result

A. Abramov
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Simulated performance - IRF
• Dispersion suppressor collimators 

essential for protecting the ring and the 

DS

• Nevertheless losses in between them 

are well above the assumed quench 

limit

• Further iterations are needed to 

optimize collimation performance

• Energy deposition should be evaluated 

with dedicated studies at critical 

locations – future work

• Compare power load in magnet 

coils with quench limit

• Note: Particle showers not seen in 

the loss map plots, which show 

only proton losses

Horizontal halo, beam 1, 50 TeV, Zoom in IRF

Preliminary result

A. Abramov
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High-β optics for collimation
• Small collimator gaps might lead to 

problematic impedance (to be 

evaluated)

• Could be mitigated through an optics 

with larger β-functions

• Such an optics could also give 

significant gains in cleaning efficiency

• As for LHC studies in IPAC’21 

paper

• First exploratory studies carried out for 

new FCC-hh layout (T. Risselada)

• To be followed up with impedance 

and cleaning performance studies

T. Risselada

https://jacow.org/ipac2021/papers/mopab006.pdf
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Next steps
Need to repeat work from CDR for new layout

• Explore optimizations of optics and collimator settings

• Study performance of momentum cleaning

• Study impedance

• Energy deposition studies to quantify risk of quench for design losses

• Maybe new thermo-mechanical studies of most loaded collimators

• Study outgassing and cooling of the most impacted elements in collimation insertion

• Study failure scenarios

• Collimation for Pb ion operation

• Energy deposition studies of collimation insertion and dispersion suppressor, possibly including 

imperfections

• Further studies of secondary beams from collision points

• Imperfection studies?

• Think of possible HiRadMat tests? 

• Potential alternative: Laser-induced mechanical shock – possible synergies with tests carried out 

at GSI facility? 
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Conclusions
• An excellent collimation performance is crucial to keep the FCC-hh safe, and to operate smoothly 

without quenches

• 8.3 GJ stored beam energy, 11.6 MW beam loss power

• Fairly mature design presented in CDR, new iterations needed with latest layout

• Shorter insertion length for betatron collimation

• First new optics and collimation layout developed for betatron and momentum cleaning 

insertions

• Work in progress

• First studies of cleaning performance with new lattice performed

• Generally good performance, but some bottlenecks need further study and performance 

improvements

• Tertiary collimators

• IRF dispersion suppressor
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for your attention.
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