Roderik Bruce

STATUS AND PLANS FOR FCC-HH COLLIMATION

R. Bruce, A. Abramov, F. Cerutti, M. Giovannozzi, S. Redaelli, T. Risselada CDR studies:

Y. Alexahin, W. Bartmann, A. Bertarelli, S. Arsenyev, I. Besana, F. Carra, A. Chance, B. Dalena, A. Faus-Golfe, M. Fiascaris, S. Gilardoni, E. Gianfelice-Wendt, G. Gobbi, J. Hunt, J. Jowett, A. Krainer, G. Lamanna, A. Langner, A. Lechner, R. Martin, A. Mereghetti, D. Mirarchi, N. Mokhov, J. Molson, A. Narayanan, L. Nevay, M. Pasquali, A. Perillo Marcone, E. Renner, M. Schaumann, D. Schulte, M. Serluca, E. Skordis, M.J. Syphers, I. Tropin, M. Varasteh, Y. Zou

Outline

- Introduction and motivation
 - Challenges with collimation in high-energy hadron colliders
 - FCC-hh vs LHC
- Recap of collimation design for CDR
- Updates since CDR
- Outlook and needed future work
- Conclusions

Collimation in high-energy colliders

- High energy and intensity => Typically, very high stored beam energy
- Need superconducting magnets to reach sufficiently high magnetic fields
 - Cooled to cryogenic temperatures
 - Sensitive to heating => Small temperature rise causes a quench (loss of superconductivity)
- Beam losses are unavoidable during regular operation
 - Even a tiny loss could cause a quench, or even material damage
- Need collimation system to safely intercept and attenuate these losses

Collimation challenge: LHC vs FCC

HL-LHC

FCC-hh

FCC

Needed loss attenuation: factor ~3×10⁴

Needed loss attenuation: factor ~10⁵

How much is 8.3 GJ?

- LHC: 362 MJ kinetic energy of
- TGV train cruising at 155 km/h

0.6 MJ 2.10¹² 4.10¹² 8.10¹² 6.10¹²

FCC-hh: 8.3 GJ - kinetic energy of

Airbus A380 (empty) cruising at 880 km/h

FCC-hh beams are highly destructive!!

Outline

- Introduction and motivation
 - Challenges with collimation in high-energy hadron colliders
 - FCC-hh vs LHC
- Recap of collimation design for CDR
- Updates since CDR
- Outlook and needed future work
- Conclusions

FCC-hh collimation layout: CDR version

- The following few slides are a summary of previous studies for CDR, references:
 - R Bruce et al 2019 J. Phys.: Conf. Ser. 1350 012009
 - Previous FCC week talks, <u>FCC collimation meetings</u>
 - Long CDR (not yet published)

- Separate betatron (PJ) and momentum cleaning (PF)
- The FCC-hh collimation system is a scaled up version of the HL-LHC/LHC system (NIM, A 894 (2018) 96-106)

Optics of collimation insertions: CDR version

- Scaled β -functions and insertion length by factor 5 from the LHC \rightarrow 2.8 km insertion length
- Increased dispersion in momentum cleaning insertion

FCC

auoniengui

FCC-hh multi-stage collimation system

- As in the LHC, using a multi-stage system with primary and secondary collimators, shower absorbers, dispersion suppressor (DS) collimators
 - DS collimators are placed in the cold region, in between dipoles where dispersion has risen
- Similar layout as the LHC, but some modifications: DS collimators in many insertions, extra shower absorbers in extraction insertion, removal of skew primary

Collimation performance – FCC-hh protons

 Collimation performance checked with tracking studies using the SixTrack-FLUKA coupling and dedicated FLUKA simulations of exposed magnets

FCC

 Collimation system is extremely efficient at absorbing horizontal and vertical losses – almost no losses on cold machine aperture, thanks to dispersion suppressor collimators

10

FCC collimator design

- Assuming LHC-type collimators, with some design modifications, following iterative simulations of tracking, energy deposition and thermo-mechanical response
- Materials
 - Primary collimators, and most loaded secondary collimator made of carbon-fiber-composite (CFC) for maximum robustness
 - Remaining secondary collimators in MoGr with 5 µm Mo coating for a good compromise between impedance and robustness
- Collimators would survive design losses in simulations, but some challenges remain: high temperature leading to potential outgassing, high deflection, load on cooling pipes

Horizontal primary

G. Gobbi, M. Pasquali

Outline

- Introduction and motivation
 - Challenges with collimation in high-energy hadron colliders
 - FCC-hh vs LHC
- Recap of collimation design for CDR
 - Updates since CDR
- Outlook and needed future work
- Conclusions

Updates since CDR

- Tunnel layout updated see talk M. Giovannozzi
 - Need to revisit optics and layout of the whole ring
- Symmetric 8-point layout, ring circumference decreased from 97.7 km to 91.1 km
- Betatron collimation moved to shorter insertion: 2.1 km instead of 2.8 km
- Momentum collimation in longer insertion: 2.1 km instead of 1.4 km

Updates to FCC-hh ring

 New layout and optics under development – work in progress, but first results available (T. Risselada)

○ FCC

- Details shown in talk by M. Giovannozzi
- Inserted collimators similar to LHC layout, including betatron and momentum collimation, tertiary collimators at experiments
 - Some collimators still to be implemented (at beam dump, physics debris...)

Updates to betatron collimation layout

 Scaling the original LHC collimation optics to new insertion lengths (T. Risselada)

- Similar collimator layout as LHC, but including 3 dispersion suppressor collimators as CDR-version of FCChh
- Insertion length and beta functions scaled by a factor ~4 compared to the LHC
- Smallest collimator half gap (vertical primary) around 0.8 mm
 - Compare: ~1mm in LHC

Momentum collimation

- For momentum collimation, LHC scaling used as starting point
- First implementation of optics and layout available
- Features high dispersion at primary collimator to give flexibility and independence between betatron and momentum cuts
- DS collimators added

- Dogleg changes the distance between the beams in collimation insertion
 - Separate primary beam from neutrals.
 - Minimise flux of neutrals on the first superconducting magnet on right side of IP
 - Needed separation depends on geometry of insertion
- CDR layout: dogleg scaled from the LHC
- New version: dogleg geometry worked out based on actual geometry in IRH
 - 290 mm separation proposed (compare 250 mm in the arc)
 - To be confirmed with energy deposition studies

Collimation in experimental insertions

 Two pairs (horizontalvertical) tertiary collimators on incoming beam

○ FCC

- Two dispersion suppressor collimators on outgoing beam
- Physics debris collimators still to be implemented

Updates to aperture model

• A detailed aperture model around the ring is crucial for collimation studies

- First implementation of new aperture model, based on mapping from CDR lattice (A. Abramov)
 - Including main magnets and collimators in insertion regions and arcs
- To be refined in future iterations

∩ FCC

Simulations of collimation performance

- Collimation performance simulated for latest version of FCC-hh using the SixTrack-FLUKA coupling
 - Magnetic tracking using SixTrack, particle-matter interactions in FLUKA
- Simulation assumptions

- 1 µm impact parameter of generic halo on primary collimator – not simulating diffusion bringing halo onto collimators
- Same collimator settings in σ and materials as in CDR

Simulated performance

 Generally very good protection of the ring, losses localized on betatron collimation system

FCC

- Rather high losses on tertiary collimators, with downstream leakage to cold magnets
 - Potentially problematic, to be followed up in future iterations

Horizontal halo, beam 1, 50 TeV

Simulated performance - IRF

 Dispersion suppressor collimators essential for protecting the ring and the DS

FCC

- Nevertheless losses in between them are well above the assumed quench limit
 - Further iterations are needed to optimize collimation performance
- Energy deposition should be evaluated with dedicated studies at critical locations – future work
 - Compare power load in magnet coils with quench limit
 - Note: Particle showers not seen in the loss map plots, which show only proton losses

Horizontal halo, beam 1, 50 TeV, Zoom in IRF

Preliminary result

High- β optics for collimation

 β_{c} (m), β_{s} (m)

- Small collimator gaps might lead to problematic impedance (to be evaluated)
- Could be mitigated through an optics with larger β-functions
- Such an optics could also give significant gains in cleaning efficiency
 - As for LHC studies in <u>IPAC'21</u>
 paper
- First exploratory studies carried out for new FCC-hh layout (T. Risselada)
 - To be followed up with impedance and cleaning performance studies

s(m)

T. Risselada

Outline

- Introduction and motivation
 - Challenges with collimation in high-energy hadron colliders
 - FCC-hh vs LHC
- Recap of collimation design for CDR
- Updates since CDR
- Outlook and needed future work
- Conclusions

Next steps

FCC

Need to repeat work from CDR for new layout

- Explore optimizations of optics and collimator settings
- Study performance of momentum cleaning
- Study impedance
- Energy deposition studies to quantify risk of quench for design losses
- Maybe new thermo-mechanical studies of most loaded collimators
- Study outgassing and cooling of the most impacted elements in collimation insertion
- Study failure scenarios
- Collimation for Pb ion operation
 - Energy deposition studies of collimation insertion and dispersion suppressor, possibly including imperfections
 - Further studies of secondary beams from collision points
- Imperfection studies?
- Think of possible HiRadMat tests?
 - Potential alternative: Laser-induced mechanical shock possible synergies with tests carried out at GSI facility?

Conclusions

- An excellent collimation performance is crucial to keep the FCC-hh safe, and to operate smoothly without quenches
 - 8.3 GJ stored beam energy, 11.6 MW beam loss power
- Fairly mature design presented in CDR, new iterations needed with latest layout
 - Shorter insertion length for betatron collimation
 - First new optics and collimation layout developed for betatron and momentum cleaning insertions
 - Work in progress
- First studies of cleaning performance with new lattice performed
 - Generally good performance, but some bottlenecks need further study and performance improvements
 - Tertiary collimators
 - IRF dispersion suppressor

SPACE FOR ADDITIONAL LOGOS

Thank you for your attention.