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Collimation in high-energy colliders
« High energy and intensity => Typically, very high stored beam energy

* Need superconducting magnets to reach sufficiently high magnetic fields
« Cooled to cryogenic temperatures
« Sensitive to heating => Small temperature rise causes a quench (loss of

superconductivity)

« Beam losses are unavoidable during regular operation
« Even atiny loss could cause a quench, or even material damage

* Need collimation system to safely intercept and attenuate these losses



Collimation challenge: LHC vs FCC

HL-LHC FCC-hh

Cold aperture, superconductors

Cold aperture, superconductors

= Quench limit Quench limit
‘g ~30 W/m ~ 100 W/m
Loss power up to ~1 MW_ = Loss power up to 11.6
= "// © = "/
Beam: 680 MJ Beam: 8.3 GJ

Needed loss attenuation: factor ~3x104 Needed loss attenuation: factor ~10°



How much is 8.3 GJ?

LHC: 362 MJ - kinetic energy of FCC-hh: 8.3 GJ — kinetic energy of
TGV train cruising at 155 km/h Airbus A380 (empty) cruising at 880 km/h
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FCC-hh beams are highly destructive!!
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FCC-hh collimation layout: CDR version
A B

Exp.
Inj. + Exp. T Inj. + Exp.

The following few slides are a
summary of previous studies for CDR,
references:

R Bruce et al 2019 J. Phys.: Conf. Ser. 1350 012009

Previous FCC week talks, FCC collimation meetings

Long CDR (not yet published)

Separate betatron (PJ) and
momentum cleaning (PF)

The FCC-hh collimation system is a
scaled up version of the HL-LHC/LHC
system (NIM, A 894 (2018) 96-106)
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https://iopscience.iop.org/article/10.1088/1742-6596/1350/1/012009
https://indico.cern.ch/category/9242/

Optics of collimation insertions: CDR version

« Scaled B-functions and insertion length by factor 5 from the LHC - 2.8 km insertion length
* Increased dispersion in momentum cleaning insertion

IRJ (Betatron cleaning) IRF (Momentum cleaning)
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FCC-hh multi-stage collimation system

 Asinthe LHC, using a multi-stage system with primary and secondary collimators, shower
absorbers, dispersion suppressor (DS) collimators
» DS collimators are placed in the cold region, in between dipoles where dispersion has risen
« Similar layout as the LHC, but some modifications: DS collimators in many insertions, extra
shower absorbers in extraction insertion, removal of skew primary
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Collimation performance — FCC-hh protons

Collimation performance checked with
tracking studies using the SixTrack-
FLUKA coupling and dedicated FLUKA
simulations of exposed magnets

Collimation system is extremely
efficient at absorbing horizontal and
vertical losses — almost no losses on
cold machine aperture, thanks to
dispersion suppressor collimators

Cleaning ineffiency (1/m)
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FCC collimator design

« Assuming LHC-type collimators, with some design
modifications, following iterative simulations of
tracking, energy deposition and thermo-mechanical
response
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« Materials
« Primary collimators, and most loaded secondary M. Varasteh
collimator made of carbon-fiber-composite
(CFC) for maximum robustness
* Remaining secondary collimators in MoGr with
5 um Mo coating for a good compromise
between impedance and robustness

Deflection =375 pm

« Collimators would survive design losses in
simulations, but some challenges remain: high
temperature leading to potential outgassing, high
deflection, load on cooling pipes

G. Gobbi, M. Pasquali
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Updates since CDR

* Tunnel layout updated — see talk M. Giovannozzi
* Need to revisit optics and layout of the whole ring

* Symmetric 8-point layout, ring circumference decreased from 97.7 km to 91.1 km
« Betatron collimation moved to shorter insertion: 2.1 km instead of 2.8 km
*  Momentum collimation in longer insertion: 2.1 km instead of 1.4 km
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Updates to FCC-hh ring

New layout and optics

under development — work

in progress, but first

results available (T.

Risselada)

* Details shown in talk
by M. Giovannozzi

Inserted collimators similar

to LHC layout, including

betatron and momentum

collimation, tertiary

collimators at experiments

* Some collimators still
to be implemented (at
beam dump, physics
debris...)
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Updates to betatron collimation layout

+ Scaling the original LHC collimation I R F
optics to new insertion lengths ——— 1 m m ——
(T. Risselada)

1600 - 4,

«  Similar collimator layout as LHC, but
including 3 dispersion suppressor
collimators as CDR-version of FCC-

1400 4 4+ ver. coll.
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Momentum collimation -
*  For momentum collimation, LHC m—l'ml'ﬂllll i i "I"Hh ’Im

scaling used as starting point —
X ;’I’i]h coll.
. - . . 4+  Ver. coll. -3
» First implementation of optics o Stew coll.

and layout available

D [m]

* Features high dispersion at
primary collimator to give
flexibility and independence
between betatron and
momentum cuts

T T T T T
53500 56000 56500 37000 57500 58000 58500

* DS collimators added s [m]
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Optimization of doglegs

Left dogleg IP
1st block > plock )
: /Beam direction “
Arc inter-beam >

distance: 250 mm M. Giovannozzi

» Dogleg changes the distance between the beams in collimation insertion
» Separate primary beam from neutrals.
» Minimise flux of neutrals on the first superconducting magnet on right side of IP
* Needed separation depends on geometry of insertion

 CDR layout: dogleg scaled from the LHC
* New version: dogleg geometry worked out based on actual geometry in IRH

* 290 mm separation proposed (compare 250 mm in the arc)
» To be confirmed with energy deposition studies
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Collimation in experimental insertions

« Two pairs (horizontal- | R G
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Updates to aperture model

A detailed aperture model
around the ring is crucial
for collimation studies

First implementation of
new aperture model,
based on mapping from
CDR lattice (A. Abramov)

* Including main
magnets and
collimators in insertion
regions and arcs

To be refined in future
iterations
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IRG (experiment)

Aperture model in insertions =

- Apertures mapped from similar elements in /f\/_\
CDR lattice — to be refined in future 0y A
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Simulations of collimation performance

» Collimation performance simulated for
latest version of FCC-hh using the
SixTrack-FLUKA coupling
« Magnetic tracking using SixTrack,

particle-matter interactions in FLUKA

« Simulation assumptions
« 1 um impact parameter of generic halo
on primary collimator — not simulating
diffusion bringing halo onto collimators
« Same collimator settings in o and
materials as in CDR
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Simulated performance

* Generally very good protection of Horizontal halo, beam 1, 50 TeV
the ring, losses localized on

betatron collimation system ' ' ' —
o | A. Abramov o
« Rather high losses on tertiary v .o

collimators, with downstream

leakage to cold magnets P

« Potentially problematic, to be
followed up in future iterations
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Preliminary result
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Simulated performance - IRF

Dispersion suppressor collimators
essential for protecting the ring and the
DS

Nevertheless losses in between them

are well above the assumed quench

limit

* Further iterations are needed to
optimize collimation performance

Energy deposition should be evaluated
with dedicated studies at critical
locations — future work
« Compare power load in magnet
coils with quench limit
* Note: Particle showers not seen in
the loss map plots, which show
only proton losses

Horizontal halo, beam 1, 50 TeV, Zoom in IRF
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High-[3 optics for collimation

Small collimator gaps might lead to
problematic impedance (to be
evaluated)

Could be mitigated through an optics
with larger B-functions

Such an optics could also give
significant gains in cleaning efficiency
« As for LHC studies in_IPAC’21
paper

First exploratory studies carried out for

new FCC-hh layout (T. Risselada)

« To be followed up with impedance
and cleaning performance studies
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https://jacow.org/ipac2021/papers/mopab006.pdf
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Next steps

Need to repeat work from CDR for new layout
* Explore optimizations of optics and collimator settings
* Study performance of momentum cleaning
* Study impedance
« Energy deposition studies to quantify risk of quench for design losses
* Maybe new thermo-mechanical studies of most loaded collimators
* Study outgassing and cooling of the most impacted elements in collimation insertion
* Study failure scenarios
« Collimation for Pb ion operation
« Energy deposition studies of collimation insertion and dispersion suppressor, possibly including
imperfections
» Further studies of secondary beams from collision points
* Imperfection studies?
* Think of possible HiRadMat tests?
» Potential alternative: Laser-induced mechanical shock — possible synergies with tests carried out
at GSI facility?
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Conclusions

* An excellent collimation performance is crucial to keep the FCC-hh safe, and to operate smoothly
without quenches

» 8.3 GJ stored beam energy, 11.6 MW beam loss power

+ Fairly mature design presented in CDR, new iterations needed with latest layout
» Shorter insertion length for betatron collimation
« First new optics and collimation layout developed for betatron and momentum cleaning
insertions
* Work in progress

« First studies of cleaning performance with new lattice performed
* Generally good performance, but some bottlenecks need further study and performance
Improvements
» Tertiary collimators
* |IRF dispersion suppressor
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