
MAD-X status and progress:
June 2022

R. De Maria for the MAD-X team

Thanks to Helmut Burkhardt, Tessa Charles, Laurent Deniau , Joshua Dilly, Gianni
Iadarola, Jacqueline Keintzel, Andrea Latina, Tobias Persson, Ghislain Roy, Piotr
Skoworonski, Frank Schmidt, Rogelio Tomas (CERN), Thomas Glasse (HIT), Scot

Berg(BNL), Angeles Faus-Golfe, Guillaume Simon (CERN, CNRS-IN2P3-UPSaclay), Felix
Carlier, Leon Van Riesen-Haupt (CERN, EPFL), Tatiana Pieloni (EPFL), CHART program

Timeline

MAD-X development was started by H. Grote by re-using MAD8 (Fortran) code and wrapping in a C shell.

MAD-X development was then coordinated by F. Schmidt, L. Deniau, T. Persson at CERN and, from 2022, by R. De Maria.

MAD-X collected contributions from dozens of accelerator physicists and computer scientists from CERN and other
laboratories.

Home web page: https://cern.ch/madx

Development: https://github.com/MethodicalAcceleratorDesign/MAD-X

1990 2000 2010 2020

MAD8

MAD-X

25 Feb, 2022

8.51.15 last CERN version
June 30, 2002

V1.07 (first on record)
11 July, 2002

V3 V4

V5.00

V2 V5.08.01V5.01

V5.02

V5.03

SLAC, DESY, … development

https://cern.ch/madx
https://github.com/MethodicalAcceleratorDesign/MAD-X

Code structure

Core
• Language Parser
• Variables
• Expressions
• Elements
• Sequences
• Tables

Twiss

Track

Emit

Match

Survey

Aperture

cpymad

MAD-X
scripts

Python
scripts

Makethin

Efcomp, Ealign

Taper
Correct

PTC

Sodd

Touschek

IBS
TFS

Tables
Plots

Python data

Modules mostly written in Fortran

MAD-X example

fodo: sequence, l =8.4;

ba: sbend, angle=0.1, l=4, at=2;

qf: quadrupole,k1 :=kqf, l=0.2, at=4.1;

bb: sbend, angle=0.1, l=4, at=6.2;

qd: quadrupole,k1 :=kqd, l=0.2, at=8.3;

rf: rfcavity, volt:=vrf,

harmon=20, lag =0.5, at=8.4;

endsequence;

beam, particle=positron, energy=2;

use, sequence=fodo;

kqf= 0.8;

kqd:=-kqf;

vrf= 1;

twiss;

value, qf->k1;

value, qd->k1;

value, table(summ,q1);

value, table(summ,q2);

to install do: pip install cpymad

from cpymad.madx import Madx

madx = Madx()

madx.input("""

fodo: sequence, l =8.4;

ba: sbend, angle=0.1, l=4, at=2;

qf: quadrupole,k1 :=kqf, l=0.2, at=4.1;

bb: sbend, angle=0.1, l=4, at=6.2;

qd: quadrupole,k1 :=kqd, l=0.2, at=8.3;

rf: rfcavity, volt:=vrf,

harmon=20, lag =0.5, at=8.4;

endsequence;""")

madx.beam(particle="positron",energy=2)

madx.use(sequence="fodo")

madx.globals.kqf = 0.8

madx.globals.kqd = “-kqf"

madx.globals.vrf = 1

tt = madx.twiss()

print(madx.elements.qf.k1)

print(madx.elements.qd.k1)

print(tt.summary.q1)

print(tt.summary.q2)

MAD-X Language

Python

Python interface more verbose but very close to the MAD-X syntax and much more flexible

MAD-X language
+ fast element manipulation
+ re-use vast existing scripts
+ concise language
- parser is brittle
- often silent errors, crashes
- limited control flow and data
structures

Python
+ well known, flexible and robust
+ easy to run multiple instance of
MAD-X
+ seamless integration with the vast
Python scientific ecosystem
- slow element manipulation for large
machines
- little more verbose

MAD-X for FCC

MAD-X is used for all circular accelerators
in the CERN complex as well as for linacs.

For FCC, MAD-X should be able to
calculated:

• Closed orbit with energy loss
with/without tapering (see TWISS,
TAPER, CORRECT)

• Undamped lattice functions (TWISS)

• Damping times, equilibrium emittance
(EMIT)

• Tracking with energy (without
damping, with damping, with quantum
excitation

• Build PTC universe and run PTC
physics: normal forms, spin (PTC)

Solenoid induced beta-beating [L. Van Riesen-Haupt]

Optimized energy for variation for Z-model [J. Keintsel]

Damping tines EMIT vs TRACK [G. Simon]

Status and plan

We are currently:

1) Reviewing TWISS, EMIT and TRACK as we observed some inconsistent results in particular
involving Solenoid and Multipoles

2) At the same time, update and release the MAD-X physics manual, based on the unpublished
MAD-8 physics manual. The goal is to (re-)derive and document equations from first
principles. It is of critical importance to enforce consistency and correctness throughout
the code.

3) Extending test suite with test cases for which the reference is not an old result but an
analytical estimate.

4) Extend tapering functionality to include octupoles and multipoles with an unified
approach.

https://cern.ch/mad8/doc/phys_guide.pdf

MAD-X Variables and Hamiltonian

𝑝𝑥 =
𝑃𝑥
𝑃𝑠

𝑝𝑦=
𝑃𝑦

𝑃𝑠
𝑝𝑡 =

𝐸 − 𝐸𝑠
𝑃𝑠𝑐

𝑡 =
1 + 𝜂𝛿𝑠
𝛽𝑠

𝑠 − 𝑐𝑇 𝑎𝑥,𝑦,𝑠 =
𝑞

𝑃0
𝐴𝑥,𝑦,𝑠

MAD-X coordinates scaled by 𝑃𝑠 = 𝑚0𝑐𝛽𝑠𝛾𝑠 = 𝑃0(1 + 𝛿𝑠)

𝐻 =
1 + 𝜂𝛿𝑠
𝛽𝑠

𝑝𝑡 − 1 + ℎ𝑥 𝑝𝑡
2 −

2𝑝𝑡
𝛽𝑠

+ 1 − 𝑝𝑥 −
𝑎𝑥

1 + 𝛿𝑠

2

− 𝑝𝑦 −
𝑎𝑦

1 + 𝛿𝑠

2

+
𝑎𝑠

1 + 𝛿𝑠

𝑃𝑥 = 𝜕 ሶ𝑥𝐿 = 𝑚𝛾 ሶ𝑥 + 𝑞𝐴𝑥
𝑃𝑦 = 𝜕 ሶ𝑦𝐿 = 𝑚𝛾 ሶ𝑦 + 𝑞𝐴𝑦
𝑃𝑠 = 𝜕 ሶ𝑠𝐿 = 1 + ℎ𝑥 2𝑚𝛾 ሶ𝑠 + 1 + ℎ𝑥 𝑞𝐴𝑠

MAD-X uses canonical coordinates using MAD-8 conventions [see reference in back-up]

Unscaled coordinates

𝑃0 =PC in the BEAM definition. 𝛿𝑠 = DELTAP in TWISS command.

𝑃0 is used to set the magnetic fields proportional to the design momentum.

𝛿𝑠 introduces a momentum error by forcing the revolution period: 𝑡f = 𝑡i → 𝑇rev =
𝐿ring 1+𝜂 𝛿𝑠

𝑐𝛽𝑠
.

𝛿𝑠 is not, in general, 𝛿0 =
𝑃−𝑃0

𝑃0
nor 𝛿 =

𝑃−𝑃𝑠

𝑃𝑠
= 𝑝𝑡 +

2p𝑡

𝛽𝑠
+ 1 − 1, but controls the energy deviation of the closed orbit.

MAD-X variables: consequences
Momentun scaling 𝑃𝑠 = 𝑚0𝑐𝛽𝑠𝛾𝑠 = 𝑃0(1 + 𝛿𝑠)

Implications:

1. For any 𝛿𝑠, on the closed orbit 𝛿0 =
𝑃− 𝑃0

𝑃0
≈ 𝛿𝑠 and 𝛿 ≈ 0, 𝑝𝑡 ≈ 0, 𝑡 ≈ 0, good to keep approximations in 𝑝𝑡, 𝑡 small.

2. In general
𝑑𝑥

𝑑𝑠
=

1+ℎ 𝑥 𝑝𝑥−
𝑎𝑥

1+𝛿𝑠

𝑝𝑡
2+

2𝑝𝑡
𝛽𝑠

+1− 𝑝𝑥−
𝑎𝑥

1+𝛿𝑠

2
− 𝑝𝑦−

𝑎𝑦

1+𝛿𝑠

2
≠ 𝑝𝑥. Careful when using 𝑝𝑥, 𝑝𝑦 inside dipoles and solenoids!

PC in BEAM command

DELTAP in TWISS command

TWISS: Exact Hamiltonian, but maps truncated to 2nd order. 𝛿𝑠 dependency is exact, 𝑝𝑡 dependency is approximated.
TRACK and EMIT: 𝛿𝑠 forced to 0 (but inconsistencies found), maps are generally symplectic solutions of approximated
Hamiltonians. DELTA in TRACK changes 𝛿 and not 𝛿𝑠.
Considering aligning behaviour of TRACK and EMIT to TWISS in the next MAD-X version.

𝑝𝑥 =
𝑃𝑥
𝑃𝑠

𝑝𝑦=
𝑃𝑦

𝑃𝑠
𝑝𝑡 =

𝐸 − 𝐸𝑠
𝑃𝑠𝑐

𝑡 =
1 + 𝜂𝛿𝑠
𝛽𝑠

𝑠 − 𝑐𝑇

𝑎𝑥,𝑦,𝑠 =
𝑞

𝑃0
𝐴𝑥,𝑦,𝑠 𝐵𝑦 𝑥, 𝑦 − 𝑖𝐵𝑥 𝑥, 𝑦 = −

𝑞

𝑃0
෍

𝑘𝑛
𝑁 + 𝑖𝑘𝑛

𝑆

𝑛!
𝑥 + 𝑖𝑦 𝑛

Coordinates scaled by 𝑃𝑠

Fields scaled by 𝑃0

Radiation effect: average power loss

−
𝑑𝐸

𝑑𝑇
=

𝑞2

6𝜋𝜖0𝑚
2𝑐3

𝑑𝑃𝜇

𝑑𝜏

𝑑𝑃𝜇

𝑑𝜏
=
2

3

𝑟𝑞
𝑚𝑐

𝑑𝑃𝜇

𝑑𝜏

𝑑𝑃𝜇

𝑑𝜏
For static
magnetic fields

𝑑𝑃𝜇

𝑑𝜏

𝑑𝑃𝜇

𝑑𝜏
= 𝑞𝛾𝛽𝑐𝐵⊥

2 =
𝑃𝑃0b⊥

𝑚

2
where b⊥ =

𝑞

𝑃0
𝐵⊥

−
𝑑𝐸

𝑑𝑇
=
2

3

𝑟𝑞𝑃0
2𝑃2

𝑚3𝑐
𝑏⊥
2

𝑑𝑝𝑡
𝑑𝑠

= −
𝑑𝐸

𝑑𝑇

𝑑𝑡

𝑑𝑠

1

𝑃𝑠𝑐
=
2

3

𝑟𝑞𝑃𝑠
3

𝑚3𝑐3
1 + 𝛿 2

1 + 𝛿𝑠
2 𝑏⊥

2
𝑑𝐻

𝑑𝑝𝑡
=
2

3
𝑟𝑞𝛽𝑠

3𝛾𝑠
3

1 + 𝛿 2

1 + 𝛿𝑠
2 𝑏⊥

2
𝑑𝐻

𝑑𝑝𝑡

The energy is lost in the direction of the momentum of
particle and not the canonical momentum:

In dipoles for
instance

𝑑𝐻

𝑑𝑝𝑡
=

𝑑(−𝑐𝑡)

𝑑𝑠
= −

1+hx pt−
1

𝛽s

1+𝛿 2−𝑝𝑥
2−𝑝𝑦

2
≈ −

1+hx

𝛽
1 −

1

2

px
2+p𝑦

2

1+𝛿 2

In MAD-X we
calculate

𝑝𝑥
new = 𝑓 𝑝𝑥 − 𝑎𝑥 + 𝑎𝑥

𝑝𝑦
new = 𝑓(𝑝𝑦 − 𝑎𝑦) + 𝑎𝑦

𝑝𝑡
𝑛𝑒𝑤 = 𝑝𝑡 1 − 𝑟 −

𝑟

𝛽𝑠

𝑟 =
𝐸−𝐸𝑛𝑒𝑤

𝐸
=-

2

3
𝑟𝑞𝛽𝑠

3𝛾𝑠
3 1+𝛿

1+𝛿𝑠 2 𝛽 0׬
𝐿
𝑏⊥
2 𝑑𝐻

𝑑𝑝𝑡
𝑑𝑠

𝑓 =
𝑃𝑛𝑒𝑤

𝑃
=

𝑟 𝑟−2

𝛽2
+ 1

Sometimes missing in the code

Conclusion

• Invest on MAD-X code to create a solid platform for FCC-ee:
• MAD-X already used for FCC-ee studies, has synergies with many other projects.
• Improve interface between MAD-X and other codes such as Xsuite relying on Python.

• Radiation effects in MAD-X used already in many FCC-ee studies:
• Few calculations have shown inconsistent results mostly related to thin multipole

elements and solenoid.
• Some usability issues have been identified related to tapering in the last version.

• Stabilize radiation calculations in MAD-X:
• Review and document radiation related physics applied to MAD-X.
• Compare calculations on FCC-ee or other test lattices using different methods such as

direct tracking, map formalism, radiation integral formalism.
• Fix issues in the code.
• Coordinate with optics studies for defining priorities such as interaction region

modelling and vertical emittance studies.

References

• MAD8 Physics guide: https://cern.ch/mad8/doc/phys_guide.pdf

Still most complete reference. Unpublished, some typos

We are in the process of correcting typos and re-release for MAD-X

• For radiation effects:

J. Jowett, Introductory statistical mechanics for electron storage
rings https://doi.org/10.1063/1.36374

https://cern.ch/mad8/doc/phys_guide.pdf
https://doi.org/10.1063/1.36374

Back-up

MAD-X Variables and Hamiltonian

𝑝𝑥 =
𝑃𝑥
𝑃𝑠

𝑝𝑦=
𝑃𝑦

𝑃𝑠
𝑝𝑡 =

𝐸 − 𝐸𝑠
𝑃𝑠𝑐

𝑡 =
1 + 𝜂𝛿𝑠
𝛽𝑠

𝑠 − 𝑐𝑇 𝑎𝑥,𝑦,𝑠 =
𝑞

𝑃0
𝐴𝑥,𝑦,𝑠

Scaled coordinates by
𝑃𝑠 = 𝑚0𝑐𝛽𝑠𝛾𝑠 = 𝑃0(1 + 𝛿𝑠)

𝐻 =
1 + 𝜂𝛿𝑠
𝛽𝑠

𝑝𝑡 − 1 + ℎ𝑥 𝑝𝑡
2 −

2𝑝𝑡
𝛽𝑠

+ 1 − 𝑝𝑥 −
𝑎𝑥

1 + 𝛿𝑠

2

− 𝑝𝑦 −
𝑎𝑦

1 + 𝛿𝑠

2

−
1 + ℎ𝑥 𝑎𝑠
1 + 𝛿𝑠

𝐿 = −
𝑚𝑐2

𝛾
+ 𝑞 ሶ𝑹 ∙ 𝑨 − 𝑞V 𝑹 𝑠 = 𝑹0 𝑠 + 𝑥 𝑠 𝒆𝑥 𝑠 + 𝑦 𝑠 𝒆𝑦 𝑠

ሶ𝑹 = ሶ𝑠 1 + ℎ𝑥 𝒆𝑠 + ሶ𝑥𝒆𝑥 + ሶ𝑦𝒆𝑦

𝑃𝑥 = 𝜕 ሶ𝑥𝐿 = 𝑚𝛾 ሶ𝑥 + 𝑞𝐴𝑥
𝑃𝑦 = 𝜕 ሶ𝑦𝐿 = 𝑚𝛾 ሶ𝑦 + 𝑞𝐴𝑦
𝑃𝑠 = 𝜕 ሶ𝑠𝐿 = 1 + ℎ𝑥 2𝑚𝛾 ሶ𝑠 + 1 + ℎ𝑥 𝑞𝐴𝑠

𝐻𝐸 = 𝑃𝑥 ሶ𝑥 + 𝑃𝑦 ሶ𝑦 + 𝑃𝑠 ሶ𝑠 − 𝐿 = 𝑐 𝑃𝑥 − 𝑞𝐴𝑥
2 + 𝑃𝑦 − 𝑞𝐴𝑦

2
+

𝑃𝑠
1 + ℎ𝑥

− 𝑞𝐴𝑠

2

+𝑚2𝑐2 + 𝑞V

𝐻−𝑃𝑠 = − 1 + ℎ𝑥
𝐸

𝑐
−
𝑞𝑉

𝑐

2

− 𝑃𝑥 − 𝑞𝐴𝑥
2 − 𝑃𝑦 − 𝑞𝐴𝑦

2
−𝑚2𝑐2 + 𝑞As

For piecewise constant curvatures!

MAD-X: useful relations

𝑓 =
𝑟 𝑟−2

𝛽2
+ 1 =

𝐸−𝐸𝑛𝑒𝑤 (−𝐸−𝐸𝑛𝑒𝑤)

𝐸2𝛽2
+ 1 =

𝐸𝑛𝑒𝑤
2 −𝐸2+𝑃𝑐2

𝑃𝑐
=

𝑃𝑛𝑒𝑤

𝑃

𝑝𝑡
𝑛𝑒𝑤 = 𝑝𝑡 1 − 𝑟 −

𝑟

𝛽𝑠
=
𝐸𝑛𝑒𝑤 − 𝐸𝑠

𝛽𝑠𝐸𝑠
=
𝐸 − 𝐸𝑠
𝛽𝑠𝐸𝑠

1 − 𝑟 −
𝐸𝑠𝑟

𝐸𝑠𝛽𝑠
=
𝐸 − 𝐸𝑠 − 𝑟𝐸 + 𝐸𝑠𝑟 − 𝐸𝑠𝑟

𝐸𝑠𝛽𝑠
→ 𝐸𝑛𝑒𝑤 − 𝐸 = −𝑟𝐸

𝑝𝑥
new = 𝑓 𝑝𝑥 − 𝑎𝑥 + 𝑎𝑥

𝑝𝑦
new = 𝑓(𝑝𝑦 − 𝑎𝑦) + 𝑎𝑦

𝑝𝑡
𝑛𝑒𝑤 = 𝑝𝑡 1 − 𝑟 −

𝑟

𝛽𝑠

𝑑𝑓 =

𝑟 − 1 𝑑𝑟
𝛽2

− 𝑟 𝑟 − 2 𝑑 Τ1 𝛽2

𝑓

𝑑𝑝𝑥 = 𝑑𝑓 𝑝𝑥 − 𝑎𝑥 + 𝑓 𝑑𝑝𝑥 − 𝑑𝑎𝑥 + 𝑑𝑎𝑥
𝑑𝑝𝑦 = 𝑑𝑓 𝑝𝑦 − 𝑎𝑦 + 𝑓 𝑑𝑝𝑦 − 𝑑𝑎𝑦 + 𝑑𝑎𝑦
𝑑𝑝𝑡 = (𝑝𝑡 −1/𝛽𝑠)𝑑𝑟

1

𝛽2
=

pt +
1
𝛽𝑠

2

𝑝𝑡
2 +

2𝑝𝑡
𝛽𝑠

+ 1

𝑑 Τ1 𝛽2

𝑑𝑝𝑡
=

2 pt+
1

𝛽𝑠

𝑝𝑡
2+

2𝑝𝑡
𝛽𝑠

+1
−

2 pt+
1

𝛽𝑠

3

𝑝𝑡
2+

2𝑝𝑡
𝛽𝑠

+1
2 =

2(𝛽𝑠−1)

𝛾𝑠
2 𝑝𝑡

2+
2𝑝𝑡
𝛽𝑠

+1
2

Fixes in track

Not directly related to
radiation damping
but still need fix when
k0l different from
angle

Missing 1 + 𝛿 1 + ℎ𝑥 dependence

https://github.com/MethodicalAcceleratorDesign/MAD-X/pull/1079

arad=ten_m_16*charge*charge*get_variable("qelect")*clight*clight/mass; 2 const =
𝑞2𝛽𝑠

3𝛾𝑠
3

6𝜋𝜖0𝑚𝑐
2 =

10−7𝑐2𝑞𝑒
2𝑒

109𝑚 𝐺𝑒𝑉

2

3
𝛽𝑠
3𝛾𝑠

3

curv = 𝑏 =

Δ𝑝𝑥
2 + Δ𝑝𝑦

2

𝑙

1

4𝜋𝜖0
= 1.00000000055(15) 10−7𝑐2(since 2019)

Damping times of Electra lattice

Taking Electra lattice as an example of small lattice with few cavities

Method Damping
constant
𝜶𝒕[𝟏/𝒔]

EMIT Thick 196.3

EMIT Thin 227.4

TRACK Thick 196.3

TRACK Thin (before fix) 70.12

TRACK Thin (after fix) 198.4

Twiss thin using

𝐷 =
𝑘0𝐷𝑥ׯ 𝑘1 + 𝑘0

2 𝑑𝑠

𝑘0ׯ
2 𝑑𝑠

𝛼𝑡 =
𝑊0

2𝐸0𝑇0
(2 + 𝐷)

198.2

𝑡[𝑡𝑢𝑟𝑛𝑠] = 𝑡0𝑒
−𝛼𝑡 𝑇0 𝑡𝑢𝑟𝑛𝑠

NB. EMIT thick and thin gives the same T0 and W0

Solenoid

Bx = −
𝐵𝑠𝑥

2Δ𝑠

B𝑦 = −
𝐵𝑠𝑦

2Δ𝑠
𝐵𝑠

𝐴𝑥 = −
1

2
𝐵𝑠𝑦 𝐴𝑦 =

1

2
𝐵𝑠x

Entry Fringe
Δ𝑥′ = 𝑘𝑠𝑦 Δ𝑝𝑥 = 0
Δ𝑦 = −𝑘𝑠𝑥 Δ𝑝𝑦 = 0

Bx =
𝐵𝑠𝑥

2Δ𝑠

B𝑦 =
𝐵𝑠𝑦

2Δ𝑠

Exit Fringe
Δ𝑥′ = −𝑘𝑠𝑦 Δ𝑝𝑥 = 0
Δ𝑦 = 𝑘𝑠𝑥 Δ𝑝𝑦 = 0

ks =
𝑞𝐵𝑠

2 𝑃0

N.B. In MAD-X, KS = 2𝑘𝑠 = 𝑞𝐵𝑠/𝑃0

Δ𝑠

𝑥′ =
1 + ℎ 𝑥 𝑝𝑥 −

𝑎𝑥
1 + 𝛿𝑠

𝑝𝑡
2 +

2𝑝𝑡
𝛽𝑠

+ 1 − 𝑝𝑥 −
𝑎𝑥

1 + 𝛿𝑠

2

− 𝑝𝑦 −
𝑎𝑦

1 + 𝛿𝑠

2

≈
𝑝𝑥 + 𝑘𝑠𝑦

1 + 𝛿

𝑩𝑠

𝑩∥
𝑩⊥

ሶ𝒓
𝐵⊥ = 𝐵𝑠 𝑥′2 + 𝑦′2

𝑦′ =
1 + ℎ 𝑥 𝑝𝑦 −

𝑎𝑦
1 + 𝛿𝑠

𝑝𝑡
2 +

2𝑝𝑡
𝛽𝑠

+ 1 − 𝑝𝑥 −
𝑎𝑥

1 + 𝛿𝑠

2

− 𝑝𝑦 −
𝑎𝑦

1 + 𝛿𝑠

2

≈
𝑝𝑦 − 𝑘𝑠𝑥

1 + 𝛿

Δ𝑠

𝑏⊥ = 2𝑘𝑠 𝑥′2 + 𝑦′2

Multipole map

−
𝑑𝐸

𝑑𝑡
=
2

3

𝑟𝑒
𝑚0𝑐

𝑑𝑃𝜇

𝑑𝜏

𝑑𝑃𝜇

𝑑𝜏

𝑝𝑥
𝑛𝑒𝑤 = 𝑓 𝑝𝑥

𝑝𝑦
𝑛𝑒𝑤 = 𝑓 𝑝𝑦

𝑝𝑡
𝑛𝑒𝑤 = 𝑝𝑡 1 − 𝑟 −

𝑟

𝛽0

𝑟𝑒 =
𝑒2

𝑚0𝑐
2with

𝑝𝑥 =
𝑃𝑥
𝑃0

𝑝𝑥 =
𝑃𝑦

𝑃0

𝑟 =
Δ𝐸

𝐸
𝑓 =

Δ𝑃

𝑃
= 1 + 𝑟(𝑟 − 2)/𝛽

With
𝑑𝑃𝜇

𝑑𝜏
= 𝛾𝑒 0, 𝑣 × 𝐵 =

𝑒

𝑚0𝑐
(0, 𝑃 × 𝐵) we get −

𝑑𝐸

𝑑𝑡
=

2

3

𝑒2𝑟𝑒𝑃
2

𝑚0𝑐 3𝐵
2

General equation for average energy loss

Assuming

−Δ𝐸 =
2

3

𝑒2𝑟𝑒𝑃
2𝑃0

2

𝑚0𝑐
3

Δ𝑝

𝑙

2
𝑙 1 + ℎ𝑥

𝛽𝑐
=
2

3

𝑒2𝑟𝑒𝐸 𝑃0
3 1 + 𝛿

𝑐 𝑚0𝑐
3

Δ𝑝

𝑙

2

𝑙 1 + ℎ𝑥

𝛿 =
𝑃 − 𝑃0
𝑃0𝑐

with

then

Integrating on the integration length 𝑙(1 + ℎ𝑥) with the integrated multipole kick Δ𝑝 = Δ𝑝𝑥
2 + Δ𝑝𝑦

2 we get:

𝑝𝑡 =
𝐸 − 𝐸0
𝑃0𝑐

Magnetostatic

ℎ = 0 → 𝐵𝑦 𝑥, 𝑦 − 𝑖𝐵𝑥 𝑥, 𝑦 = −
𝑞

𝑃0
෍

𝑘𝑛
𝑁 + 𝑖𝑘𝑛

𝑆

𝑛!
𝑥 + 𝑖𝑦 𝑛

𝐴𝑥 = 0
𝐴𝑦 = 0

𝐴𝑠 = −𝐵0 𝑥 −
ℎ2

2 1+ℎ𝑥
− 𝐵1

1

2
𝑥2 − 𝑦2 −

ℎ

6
𝑥3 − 𝐵2…

𝐵𝑥 𝑠, 0, 𝑠 = 0

𝐵𝑦 𝑥, 0, 𝑠 = ෍

𝑛=0

𝑁

𝐵𝑛
𝑥𝑛

𝑛!

𝐵𝑠 𝑥, 0, 𝑠 = 0

Curved frame traverse magnetic fields

Straight frame solenoidal fields

𝐴𝑥 = −𝑦𝑈
𝐴𝑦 = 𝑥𝑈

𝐴𝑠 = 0

𝑈 = ෍

𝑛=0

∞
−1 𝑛𝑟2𝑛𝜕𝑧

2𝑛𝐵𝑧(0,0, 𝑧)

22𝑛+1𝑛! 𝑛 + 1 !

Straight frame traverse magnetic fields

