

# Beam-cavity interaction studies for the FCC-ee – RF frequency considerations

Ivan Karpov, Rama Calaga, Heiko Damerau, Linhao Zhang, Elena Shaposhnikova, Philippe Baudrenghien, Franck Peauger, Olivier Brunner, Igor Syratchev, Sosoho-Abasi Udongwo, Shahnam Gorgi Zadeh Acknowledgements:

Tor Raubenheimer, Katsunobu Oide, and many other members of FCC-ee optics and FCC SRF

## Interaction of beam with cavity impedance

Main effects that need to be considered:

- Higher-order-mode power losses
- Beam loading (steady-state and transient)
- Coupled-bunch instabilities (longitudinal and transverse)
- → Operation at Z energy is the most challenging

Most of them were addressed for the CDR parameters, but

- Beam and accelerator parameters keep changing
- Alternative scenarios emerge
- → Re-evaluation of beam-cavity interaction aspects is needed

## Update of parameters

Layout & placement optimization results in a smaller FCC circumference (PA31-1.0)

→ A decrease of the beam current by about8% for all energies

Optimization of luminosity for 4 IPs

- → Higher bunch charge
- → Higher RF voltage

| Parameter                          | FCC week 2022         | CDR                  |
|------------------------------------|-----------------------|----------------------|
| Total current, $J_A$               | 1.28 A                | 1.39 A               |
| Bunch intensity, $N_p$             | 2.43×10 <sup>11</sup> | 1.7×10 <sup>11</sup> |
| Number of bunches, $M_b$           | 10000                 | 16640                |
| Bunch length (BS), $\sigma$        | 14.5 mm               | 12.1 mm              |
| Total RF voltage, V <sub>tot</sub> | 120 MV                | 100 MV               |

These parameters will change after taking into account the precise choice based on FCC-hh RF synchronization aspects (see slides of L. Zhang)

→ What is the impact on operation at Z energy?

## **HOM** power losses

Simulated cavity impedance

Normalized Fourier harmonics of beam current

$$P = I_{b,DC}^{2} \sum_{k=-\infty}^{\infty} \text{Re}[Z_{||}(kf_{rev})]|I_{k}|^{2}$$

 $I_{b,DC}$  – average beam current  $f_{rev}$  – revolution frequency k – revolution harmonic number

Detailed analysis was performed for single-cell cavity design of 2015\* with HOM below cut-off frequency of the beam pipe

- → Acceptable filling schemes were defined for operation
- → For all recent cavity designs, the first HOM is above cut-off frequency



<sup>\*</sup>I. Karpov, R. Calaga, E. Shaposhnikova, PRAB 21, 071001 (2018)

## Impact of higher bunch charge

HOM power loss for broadband impedance can be approximated

$$P_{\rm HOM} = I_{b,\rm DC}^2 \sum_{k=-\infty}^{\infty} {\rm Re} \big[ Z_{||}(kf_{\rm rev}) \big] |I_k|^2$$
 Gaussian bunches 
$$\approx e f_0 I_{b,\rm DC} N_p \sum_{k=-\infty}^{\infty} {\rm Re} \big[ Z_{||}(kf_{\rm rev}) \big] e^{-(2\pi k f_0 \sigma/c)^2}$$

Since bunch length scales\* as  $\sigma \propto \sqrt{N_p}$ 

 $\rightarrow$  For the worst-case scenario,  $\text{Re}Z_{||}(kf_{\text{rev}}) = \text{const.}$ ,  $P_{\text{HOM}} \propto \sqrt{N_p}$  and thus weakly depends on parameter variations

<sup>\*</sup>D. Shatilov, ICFA Beam Dyn. Newslett. 72, 30 (2017)

## Transient beam loading



Gaps in machine filling will result in modulation beam parameters (bunch length and phase)



→ Might have impact on luminosity

#### Conventional approaches:

- Small-signal model in frequency domain\*, which assumes small modulations (but we have 100% modulation of beam current!)
- Particle tracking simulations (difficult for 10000 bunches in FCC-ee Z)
- → We use steady-state time domain method\*\*

<sup>\*</sup> F. Pedersen, RF Cavity feedback, CERN/PS 92-59 (1992)

<sup>\*\*</sup> J. Tückmantel, CERN Report No. CERN-ATS-Note-2011- 002 TECH, 2011

# Example for single-cell cavity in FCC Z

- → There is a strong modulation due to the abort gap and a fine structure due to the gaps between trains
- → For identical rings, transients can be compensated by matching abort gaps (e.g., in PEPII, LHC,...); one gap is sufficient for 4 symmetric IPs

Imbalance of charge results in different detuning for electron and positron beams

- → Slightly different transients
- $\rightarrow$  The collision point shift is negligible for  $\pm$  5 % random spread of bunch charge



# Example for single-cell cavity in FCC Z

- → There is a strong modulation due to the abort gap and a fine structure due to the gaps between trains
- → For identical rings, transients can be compensated by matching abort gaps (e.g., in PEPII, LHC,...); one gap is sufficient for 4 symmetric IPs

Imbalance of charge results in different detuning for electron and positron beams

- → Slightly different transients
- $\rightarrow$  The collision point shift is negligible for  $\pm$  5 % random spread



# Example for single-cell cavity in FCC Z

- → There is a strong modulation due to the abort gap and a fine structure due to the gaps between trains
- → For identical rings, transients can be compensated by matching abort gaps (e.g., in PEPII, LHC,...); one gap is sufficient for 4 symmetric IPs

Imbalance of charge results in different detuning for electron and positron beams

- → Slightly different transients
- ightarrow The collision point shift is negligible for  $\pm$  5 % random spread



## Longitudinal CBI due to fundamental mode

For short Gaussian bunches the growth rate of the mode *m* is\*

$$\frac{1}{\sigma_m} \approx \frac{e\eta I_{b,\mathrm{DC}} N_{\mathrm{cav}}}{4\pi E_b Q_s} \omega_{\mathrm{RF}} \{ \mathrm{Re}[Z_{\mathrm{cl}}(\omega_+)] - \mathrm{Re}[Z_{\mathrm{cl}}(\omega_-)] \},$$

with 
$$\omega_{\pm} = \omega_{\rm RF} \pm (m + Q_s) \omega_{\rm rev}$$

$$Z_{
m cl}(\omega) = rac{Z(\omega)}{1 + e^{-i au_{
m delay}\omega}Ge^{i\phi}Z(\omega)}$$
  $au_{
m delay}$  - overall delay  $G = rac{1}{2(R/Q)\omega_{
m RF} au_{
m delay}}$  - FB gaing  $G = 0$  - phase adjustment

Cavity impedance at fundamental,  $Z(\omega)$ 



Passive damping sufficient if  $\tau_m > \tau_{SR}$  - synchrotron radiation damping time (1170 turns at Z pole)  $\rightarrow$  Since,  $\eta$ ,  $I_{b,DC}$ ,  $N_{cav}$ ,  $Q_s$  have changed slightly, we don't expect any significant impact on beam stability

<sup>\*</sup> J. L. Laclare, CAS, (1985)

<sup>\*\*</sup> F. Pedersen, RF Cavity feedback, CERN/PS 92-59 (1992)

### Growth rates vs bunch mode number

- → Direct RF feedback reduces CBI growth rates below the threshold.
- → An additional feedback (1-turn delay, multi-harmonic?) could be implemented to provide additional margin.

#### Case of direct RF feedback only



# Longitudinal CBI due to HOMs at Z pole

A standard formula for threshold (only one sideband contributes)

$$Z_{\parallel}^{\text{th}}(f) = \frac{2E_b Q_s}{eI_{b,DC} \eta \tau_{SR}} \frac{1}{f}$$

→ CBI instabilities due to HOMs will be suppressed by synchrotron radiation



## Transverse CBI due to HOMs

Similar expression for threshold

$$Z_{\perp}^{\mathrm{th}} = \frac{E_{b}}{e f_{\mathrm{rev}} I_{b,\mathrm{DC}} \beta_{xy} \tau_{\mathrm{SR}}}$$

- → HOM below the cut-off frequency is close to the CBI threshold
- → Bunch-by-bunch feedback system damping time of about 100 turns should be sufficient to suppress instabilities due to HOMs



## Alternative scenario

In CDR 400 MHz 4-cell cavities are used from W + for ttbar 800 MHz, 5-cell cavities will be installed in addition

In 2018\*, a "Hybrid scheme" was proposed to split RF systems for low energy (Z, W) and high energy (H,ttbar) operation points (additionally to replace 4-cell with 2-cell cavities to be below the threshold of transverse CBI)

→ The present scenario also assumes the same RF system for e- and e+ beams for the H pole

(similar to ttbar)\*\*

→ RF voltage for ttbar is dominated by 800 MHz (its contribution is optimized as suggested by T. Raubenheimer and K. Oide\*\*\*)

| Parameter                       | Unit | H (ZH) | ttbar   |
|---------------------------------|------|--------|---------|
| Total current, $J_A$            | mA   | 26.7   | 5.0     |
| Total RF voltage, $V_{\rm tot}$ | GV   | 2.1    | 2.1/8.2 |
| SR energy loss/turn, $U_0$      | GeV  | 1.9    | 10.0    |
| RF frequency, $f_{RF}$          | MHz  | 400    | 400/800 |

preliminary

<sup>\*</sup> S. Gorgi Zadeh et al, IPAC, 2018

<sup>\*\*</sup> F. Peauger, V. Parma, O. Brunner, 151st FCC-ee Optics Design Meeting & 22nd FCCIS WP2.2 Meeting, Mar. 17, 2022

<sup>\*\*\*</sup> K.Oide, FCC-ee parameter meeting, Nov. 16, 2021

## Summary

Beam-cavity interaction for FCC-ee operating at the Z pole is the most challenging (high beam current, a large number of bunches, etc). They are re-evaluated for the latest parameter set:

- HOM power losses weakly depend on single-bunch intensity.
- The impact of transient beam loading on the displacement of collision points is negligible.
- Longitudinal coupled-bunch instabilities are under control.
- To suppress transverse CBI due to HOMs bunch-by-bunch transverse feedback system is required.

#### Next steps:

- CBI and beam loading for W, H, ttbar calibration at Z energy
- HOM power and stability in the booster (24s at 20 GeV with the beam current of 140 mA)

## Coupled-bunch instabilities in Booster





Longitudinal is very close to the threshold.

# Thank you for your attention!

## Steady-state beam loading

RF power per cavity in presence of beam loading  $P = V_{\text{cav}}I_{b,\text{DC}}\cos\phi_s = 50 \text{ MW}/N_{\text{cav}}$  is minimized by using\*

Optimal quality factor

$$Q_L = \frac{V_{\text{cav}}}{2(R/Q)I_{b,\text{DC}}\cos\phi_s}$$

Red – fixed parameters

Optimal detuning

$$\Delta\omega = \omega_0 - \omega_{RF} = -\frac{\omega_{RF}(R/Q) I_{b,DC} \sin \phi_s}{V_{cav}}$$

Lower voltage requires less RF power but results in larger detuning.

- → Transient beam loading can potentially affect luminosity
- → Longitudinal coupled bunch instability (CBI) due to fundamental mode can be an issue

<sup>\*</sup> D. Boussard, Control of cavities with high beam loading, IEEE Trans. Nucl. Sci. 32, 1852 (1985)

- Next steps:
- HOM power and stability in Full energy booster (should be easy to get longitudinal CBI threshold curve at 20 GeV)

CBI and beam loading for H calibration at Z energy