FCC

ELLIPTICAL CAVITIES PRODUCTION TECHNOLOGIES

Marco Garlasche' On behalf of FCC SRF Work Package and CERN EN-MME Group

2

End goal is to provide cavities conform to CDR baseline requirements. In order to do this:

- Identify the best manufacturing strategy in view of *RF performance*, 400MHz design, series production
- Supporting R&D of all stakeholders involved

Fabrication Program [..2022 →2023..]

FCC Week 2022

 Provide substrate for RF & coating studies Benchmark fabrication processes uninfluenced by the size of the cavity 	internal EB welding, machining of RF surfaces, spinning, deep drawing
Provide substrate for RF & coating studies	Cost reduction studies Industrialization of cutoffs
Validate best manufacturing strategy in view of series	

- 1.3 GHz : Design Of Tests defined. Few activities finished/ongoing
- 400 MHz :
 - Studying options for cavity fabrication process (seamless,...)
 - Industrialization strategy for Cut-Offs production

FCC

Monoblock 1.3 GHz Cavity CERN Ref. : Karol SCIBOR

Proposed and implemented first of kind mono-block cavity

Specific process definition for bulk machining

- Tool holder design & manufacturing
- CAM programming, Diamond finishing

Metrology

- Roughness Ra ~ 0.15 µm
- internal shape deviation < 20 µm
- Wall thickness variations $< 20 \ \mu m$

Best Performance in terms of coating & **RF** results !

Monoblock = Reference component for **Fabrication studies**

Courtesy Walter VENTURINI

 10^{1}

 10^{1}

00

FCC Week 2022

Electron Beam Welding : Internal with Deflector

CERN Ref. : Gilles FAVRE

Successfully done

() FCC

- ✓ 1.3 GHz Nb cavity: fully welded from inside using deflector
- ✓ 1.3 GHz Cu cavity: equator welded using deflector

Ongoing & future work

- ✓ Development or local repair strategy using deflector (lack of fusion, undercuts & repair of holes)
- ✓ Optical vision system to ease joint localization (400 MHz only)
- ✓ Development of parameters for 400 MHz Cu cavities welding:
 - \rightarrow Feasibility study to add focusing coil to minimize the beam divergence at long distance

ELL Cavities Program

Hydroforming 1.3 GHz Cavity

FCC Week 2022

Single-step Hydroforming

() FCC

1) Hydro-form

2) Measure

- 3D Shape & deformed mesh
- Thickness, Roughness
- 3) Benchmark with numerical simulations

Collaboration with KEK A. Yamamoto, M. Yamanaka

Necking + Hydroforming

Hydroforming 400 MHz Cavity

FCC Week 2022

() FCC

Our target: from tube to cavity in minimum # steps Always aiming at the industrially feasible

- Initial tube, standard from industry :
 - OD 311 mm, thck. 5.5 mm
 - L ~ 600mm
 - LIMIT
- Hydroforming ONLY
- From tube to final geometry in two steps
- Intermediate annealing

6

ELL Cavities Program

Manufacturing R&D

FCC Week 2022

FCC

- More "Fundamental" R&D is also ongoing
- Studying the influence of fabrication processes on material properties/features of interest for (S)RF
- Mostly embedded within current activities in ongoing Fabrication Program

Roughness amelioration:

<u>Aim:</u> Check if roughness can be reduced by chemical treatments.

<u>Question:</u> Is there a lower **limit?** Is there a difference in terms of roughness improvement **between machined vs. deformed surfaces**?

Hydrogen content:

<u>Aim</u>: Check the potential **impact of** several **manufacturing processes** (spinning, machining, hydroforming, electro-hydraulic forming,...) on the **hydrogen content**.

Concern: Nb hydrides

Barkov, F., et al. "Precipitation of hydrides in high purity niobium after different treatments." *Journal of Applied Physics* 114.16 (2013): 164904.

Collab. : TE/VSC – EN/MME CERN Ref. : Adria GALLIFA, Guillaume ROSAZ FCC Week 2022

R&D: Machining & Affected Surface Layer

CERN Ref. : Pierre NAISSON

<u>Aim</u>: master the **impact of machining on the surface layer**; and its influence on later coating performance

Study finalized for finishing conditions in **turning**:

- Influence on substrate limited to 60 µm in optimal machining condition
- Highly modified subsurface limited to only 5 µm

Parallel activity just started for milling

5/2022

8

https://www.sciencedirect.com/science/article/pii/S092401362100443X

R&D : Copper Formability

FCC Week 2022

- Evolving Forming Limit Diagram to incorporate features of interest for SRF
- Quick prediction of multiple factors (failure, process yield)

SRFLD with thickness prediction

○ FCC

Thank you for your attention

Additional Activities

Ceramic Feedthroughs for SRF

Initial Campaign Finalized:

() FCC

- **Design** to resist more rugged mounting and cryogenic conditions
- Comprehensive **Tests** to validate design:

FCC Week 2022

- Thermal Shocks (LN₂)
- NDT: Leak Test, µCT
- DT: Penetrant (ceramic surface), Metallurgic Examinations

Ongoing & future work

Numerical simulation of brazing assemblies. Predict residual stresses and deformation after brazing of dissimilar materials.

- Strong reduction of time and resources for testing of assembly design
- Design optimization through simulations rather than practical trial and error

Establishment of sound material models & failure criteria for ceramic components

Collab. SY/RF - EN/MME CERN Ref. : Eric MONTESINOS, Fritz MOTSCHMANN

HL-LHC CRAB Antenna

old design: "Full Ti-flange"

new design: rotatable Ti-Flange (with ss-ring)

Significant cracks after mount and thermal shocks

No development of cracks after 5 mounts and thermal shocks

Simulation and experimental test of creep in copper samples (flexural beam)

Additive Manufacturing for SRF Applications

ELL Cavities Program

FCC Week 2022

() FCC

13

To produce complex components

