FCC Week 2022

Tor Raubenheimer

ACCELERATOR OVERVIEW

gratefully acknowledging the contributions of the FCC Accelerator Pillar as well as the rest of the FCC team

Introduction

- FCC-ee fills need for a precision EW/Higgs factory while setting stage for a 100 TeV p-p collider in the future
 - FCC infrastructure will support a century of physics
- Very high luminosity precision study of Z and H
 2×10³⁶ cm⁻²s⁻¹/IP at Z and 7×10³⁴ cm⁻²s⁻¹ at Zh
- "Low-risk" technical solution based on 60 years of e⁺e⁻ circular colliders and particle detectors
 - R&D on components for improved performance but no need for "demonstration" facilities
- Utility requirements similar to CERN existing use

FCC-ee Luminosity

- FCC-ee efficient \mathcal{L} from Z to $t\overline{t}$
 - Thanks to twin-aperture magnets, SRF, efficient RF power, top-off injection
- Accumulate >2.5 ab⁻¹ with ~0.5x10⁶ H produced per IP
- Accumulate >75 ab⁻¹ with ~2x10¹² Z produced per IP
- Run plan naturally starts at Z but is under discussion

Highest lumi per AC site power of all proposals Electricity cost ~200 CHF per Higgs boson

- Overall requirements and status
- Parameters
- Main e+/e- rings beam optics
- Collective effects, Dynamic aperture, Injection, Collimation, ...
- Full-energy booster
- E+/e- injector
- Technical systems
- Many, many topics with significant progress touch on a few

Accelerator Design Goals

- 1. Establish a baseline with robust technology consistent with placement studies for mid-term review in fall of 2023
 - The baseline is a refinement of the CDR design complemented with more complete specifications and studies
- 2. Establish a list of alternative technologies that could have significant impact on cost or performance
 - Develop timelines to demonstrate these alternatives and move to baseline
- 3. Iterate on the baseline for the completion of the Feasibility Study in 2025

Accelerator Design Status

- New 91 km circumference placement with 8 access points
- Layout with 4 IP's that is consistent with upgrade to FCC-hh
- Optimizing allocation of straight sections
- New FCC-ee optics to optimize beam-beam
- 400 MHz and 800 MHz RF systems
- Starting tunnel integration studies for RF and Arc sections
- Full energy booster that will fit in FCC tunnel for top-up injection
- e+ / e- injector to fill booster 24 / 7

Basic Design Choices

- Double ring e+e- collider
- **Common footprint with FCC-hh**, except around IPs
- Asymmetric IR layout and optics to limit synchrotron radiation towards the detector
- Perfect 4-fold superperiodicity allowing 2 or 4 IPs; large horizontal crossing angle 30 mrad, crab-waist collision optics
- Synchrotron radiation power 50 MW/beam at all beam energies
- **Top-up injection** scheme for high luminosity Requires **booster synchrotron in collider tunnel**

100 TeV FCC-hh

- 16T CF dipoles (or 17T SF dipoles)
- Layout like LHC but with four-fold symmetry (up to 4 IP's)
- Compatible with LHC or upgraded SPS as Injector
- Portion of transfer lines in the ring tunnel
- Circumference of 91.1 km
- 400.8 MHz RF 121800 harmonic consistent with SPS & LHC and multiple uniform bunch spacings

FCC-ee layout consistent with FCC-hh

○ FCC	FCC-ee Paran	neters	K. Oide, D.	Shatilov ¹⁰ ttbar	
Parameter [4 IPs, 91.1 km,T _{rev} =0.3 ms]	Z	ww	H (ZH)		
beam energy [GeV]	45	80	120	182.5	
beam current [mA]	1280	135	26.7	5.0	
number bunches/beam	10000	880	248	40	
bunch intensity [10 ¹¹]	2.43	2.91	2.04	2.37	
SR energy loss / turn [GeV]	0.0391	0.37	1.869	10.0	
total RF voltage 400 / 800 MHz [GV]	0.120/0	1.0 / 0	2.08 / 0	2.5 / 8.8	
long. damping time [turns]	1170	216	64.5	18.5	
horizontal beta* [m]	0.1	0.2	0.3	1	
vertical beta* [mm]	0.8	1	1	1.6	
horizontal geometric emittance [nm]	0.71	2.17	0.64	1.49	
vertical geom. emittance [pm]	1.42	4.34	1.29	2.98	
horizontal rms IP spot size [μm]	8	21	14	39	
vertical rms IP spot size [nm]	34	66	36	69	
beam-beam parameter ξ_x / ξ_y	0.004 / 0.159	0.011 / 0.111	0.0187 / 0.129	0.093 / 0.140	
rms bunch length with SR / BS [mm]	4.38 / 14.5	3.55 / <mark>8.01</mark>	3.34 / 6.0	1.95 / 2.75	
Iuminosity per IP [10 ³⁴ cm ⁻² s ⁻¹]	182	19.4	7.26	1.25	
total integrated luminosity / year [ab-1/yr]	87	9.3	3.5	0.65	
beam lifetime rad Bhabha + BS [min]	19	18	6	9	

FCC-ee Arc optics

FCC

- New configuration for arc optics with long ~100 m cells at Z & W and short ~50 m cells at Zh and t-tbar
 - \circ $\;$ Reduces ϵ_x at high E and increases α_c at low E

K. Oide

FCC-ee IR optics

- Novel 'virtual' crab waist combining local vertical chromaticity correction
 - Crab waist was demonstrated at DAFNE
 - Crab waist is also being used at SuperKEKB
- Optimized optics configurations for each of the 4 working points

CDR optics, ttbar 182.5 GeV

FCC-ee IR geometry

) FCC

- FCC-ee and FCC-hh IP's moved to same location to reduce IR tunnel width
- Asymmetric IR layout is chosen to minimize the incoming synchrotron radiation

- $\odot~$ Photon E_{crit} < 100 keV from magnets within ~500 m of IP
- Collimators and masks further protect detectors
- Optimization is ongoing as part of MDI effort

FCC-ee IR quadrupole optics

FCC

• Final quadrupole configuration is optimized for different working points from the Z to t-tbar

15

FCC-ee Beam-Beam

- Beam-beam at high luminosity drives the ring parameters
- Updating beam-beam calculations and developing impedance model for the ring based on vacuum components

Iterated over

many times.

FCC-ee Optics correction and tuning

- Developed model for correcting orbit and optics due to errors in the arcs which is complicated due to large size of the rings
 - Correction is effective at correcting ε_y and optics which is generated in the arcs but is not sufficient to restore dynamic aperture Sextupoles set to 10% of their design strength . Orbit correction
 - Need to develop and model
 IR optics tuning knobs

ttbar (182.5 GeV) 4IP lattice, after correction strategy

[₩] RMS misalignment and field errors tolerances:

Combined coupling and dispersion correction (Python)

Beta-beating correction applied (Python)

Sextupole strengths increased by 10%

Туре	ΔX (μm)	ΔY (μ m)	ΔPSI (μrad)	ΔS (μm)	$\Delta DTHETA$ (μrad)	$\begin{array}{c} \Delta \text{DPHI} \\ (\mu \text{rad}) \end{array}$
Arc quadrupole [*]	50	50	300	150	100	100
Arc sextupoles [*]	50	50	300	150	100	100
Dipoles	1000	1000	300	1000	-	-
Girders	150	150	-	1000	-	-
IR quadrupole	100	100	250	250	100	100
IR sextupoles	100	100	250	250	100	100

* misalignments relative to girder placement

Constant checking of the tunes and orbit avoids running into resonances, or failure to find the closed orbit.

16

17

FCC-ee Dynamic Aperture

- Large dynamic aperture is needed for top-up injection and lifetime due to high beamstrahlung energy tails
 - Dynamic aperture optimized with ~150 families of sextupoles Ο
 - Aperture is good without errors but still need to improve error correction Ο

FCC-ee Impedance modeling

- Impedance modeling is a critical step in evaluating performance limits of modern accelerators
 - Developing budget with vacuum chamber, bellows, BPMs, RF, and collimators

FCC-ee Collective effects

- Single bunch instabilities can be calculated based on impedance, beam-beam, and ring optics but there is complicated interplay
 - Longitudinal wake and beam-beam constrains tunes
 - o Beam-beam stabilizes the transverse mode-coupling instability
 - Longitudinal wake also likely modifies the mode-coupling instability
- Multibunch instabilities constrain bunch spacing
 - Requires low SEY on vacuum chamber
 - Damped RF cavities and electron cloud limits $\Delta t \ge 15$ ns
- Large ring circumference limits feedback gain
 - Developing integrated simulations for collective effects with feedback

FCC-ee SRF Systems

- Baseline uses established SRF technologies in use at CERN
- 800 MHz for booster and 400 MHz at Z, W, Zh while adding 800 MHz at t-tbar
 - Z with very high current → 120 MV of low frequency (400 MHz) single-cell cavities with RF dedicated to e+ or e-
 - Upgrade to 2-cell cavities at W with 1 GV in each ring
 - Increase to 2.1 GV shared between e+ and e- at Zh
 - Add 9 GV of 5-cell 800 MHz to e+ and e- rings along with a total of 11 GV 800 MHz for the booster
- Consider more aggressive options as alternates in future

FCC-ee SRF Systems

24th May 2022	Z		W			н	ttbar2		
	per beam	booster	per beam	booster	2 beams	booster	2 beams	2 beams	booster
Frequency [MHz]	400	800	400	800	400	800	400	800	800
RF voltage [MV]	120	140	1000	1000	2480	2480	2480	9190	11670
Eacc [MV/m]	5.72	6.23	11.91	24.26	11.82	25.45	11.82	24.52	25.11
# cell / cav	1	5	2	5	2	5	2	5	5
Vcavity [MV]	2.14	5.83	8.93	22.73	8.86	23.85	8.86	22.98	23.53
#cells	56	120	224	220	560	520	560	2000	2480
# cavities	56	24	112	44	280	104	280	400	496
# CM	14	6	28	11	70	26	70	100	124
T operation [K]	4.5	2	4.5	2	4.5	2	4.5	2	2
dyn losses/cav [W]	19	0.5	174	7	171	8	171	51	8
stat losses/cav [W]	8	8	8	8	8	8	8	8	8
Qext	6.6E+04	3.2E+05	1.2E+06	8.9E+06	1.5E+06	1.2E+07	8.3E+06	4.9E+06	5.3E+07
Detuning [kHz]	8.939	4.393	0.430	0.115	0.123	0.031	0.025	0.040	0.005
Pcav [kW]	880	205	440	112	352	95	62	207	20
rhob [m]	9937	9937	9937	9937	9937	9937	9937	9937	9937
Energy [GeV]	45.6	45.6	80.0	80.0	120.0	120.0	18	2.5	182.5
energy loss [MV]	38.49	38.49	364.63	364.63	1845.94	1845.94	987	5.14	9875.14
cos phi	0.32	0.27	0.36	0.36	0.74	0.74	0.70	0.90	0.85
Beam current [A]	1.280	0.128	0.135	0.0135	0.0534	0.005	0.010	0.010	0.001

FCC-ee RF placement

FCC

- Optimizing the RF placement to minimize center-of-mass energy variation and reduce infrastructure requirements
 - \circ $\,$ The two best access points for SRF are PL and PH $\,$
 - A single RF region reduces the c-o-m energy variation between IP's to ~7 keV for Z operation
 - t-tbar requires 2 RF regions and the beam energy will vary by ±4 GeV

Boost: + for e+; - for e-

23

FCC-ee Injector

Design concept being developed with PSI

- High brightness e- source and efficient e+ source with damping ring to generate pairs of 6 GeV bunches at 200 Hz (for Z)
- Acceleration to Booster at ~20 GeV in SPS or high energy linac

) FCC

24

FCC-ee Injector positron source

- Positron rates much lower the LC designs (~2x SLC e+ source)
 - e+ source based on HTS solenoid
 - Simulations predict yields >5 Ο
 - Verification experiment planned at Ο PSI using 6 GeV SwissFEL e- beam

electron beam

FCC-ee Injector

○ FCC

• Injector requirements

	Baseline	HE Linac	Unit
Ring for injection	SPS/PBR	BR	
Injection energy	6	20	GeV
Bunch population both species	3.47 (5.55)	3.12 (5.0)	1E10 (nC)
Repetition rate	200	200	Hz
Number of bunches	2	2	
Bunch spacing	17.5-100	17.5-100	ns
Normalized emittance (x, y) (rms)	50, 50	50, 50	mm.mrad
Bunch length (rms)	~1	~1	mm
Energy spread (rms)	<0.1	<0.1	%

FCC-ee Full-energy booster

- Full-energy booster will enable top-up injection
 - Ramps from 20 GeV to main ring energy in a second
 - Damps incoming emittance from Injector to match main rings
 - o Layout matches main ring cell structure although location in IR uncertain

FCC-ee Full-energy booster

• Challenges for booster with Z operation

- Long accumulation time at Z or roughly 25 s (10,000 bunches at 400 Hz)
- Effects like IntraBeam Scattering may cause variation from bunch to bunch
- Options being explored are to increase damping during accumulation

FCC-ee MDI and IR design

FCC

 Complicated integration with SC quadrupoles, solenoids, IR chamber, LumiCal, shielding, and diagnostics

FCC-ee IR magnets

FCC

Canted-Cosine-Theta magnets w/ fringe fields fully compensated

- Elegant 2-layer design for inner quadrupoles
- Working to fit within 100 mrad stay-clear cone
- Integration with supports, solenoids, trim coils, shielding, cryostat, etc needs to be developed
- Prototype built and warm-tested

External review of concept April, 2022

Pre-engineering design review and roadmap discussion for FCC-ee IR magnets

I 4 Apr 2022, 14:00 → 5 Apr 2022, 19:00 Europe/Zurich

FCC-ee Vacuum system

- Specifying vacuum system
 - Consider discrete absorbers space every
 - <6 m or continuous absorbers along chamber wall
 - NEG coated Cu
 vacuum chamber
 - Need shielding to minimize tunnel radiation levels

FCC-ee SRF Technology

FCC

- SRF technology building on LHC studies and collaborative R&D
 - 5-cell 800 MHz cavity without damping built and tested at 2K by Jefferson lab with excellent results
 - 400 MHz cavities based on LHC studies of Cu-coated Nb cavities at 4.5K

Model for 2-cell 400 MHz synergistic with LHC

Jlab test of 5-cell 800 MHz

FCC-ee Diagnostic examples

 Roughly 400 kW of beamstrahlung at Z operation

- Can signal be used to optimize collisions?
- Center-of-mass energy calibration at Z << 100 keV
 - Plan to use resonant depolarization
 of pilot bunches similar to LEP
- Beam size and position diagnostics are critical to achieving and maintaining small vertical emittances

F. Valchkova-Georgieva, 3 J-P. Corso

FCC-ee Integration

• Working on integration of RF regions and Arc cell

TOTAL RF LENGTH: 2014,4 m

FCC-ee Alternative technologies

- Developing technologies with significant potential impact in parallel to baseline, e.g. Changes in the spacings & lengths
 - HTS arc quadrupole/sextupole
 - HE linac as a pre-booster
 - High Q₀ damped SRF cavities
 - High efficiency RF power sources
 - Positron target using crystal channeling
 - Advanced cooling tower design

M. Koratzinos

0...

Day	Monday	Tuesday				Wednesday			Thursday			
Room	Plenary	Parallel 1	Parallel 2	Parallel 3	Parralel 4	Parallel 1	Parallel 2	Parallel 3	Parallel 1	Parallel 2	Parallel 3	Parallel 4
	Campus Cordeliers	CICSU Jussieu		Campus Cordeliers Réfectoire		Campus Cordeliers			Réfectoire			
Time	FARABOEUF	Room 105	Room 107	Room 109	Room 116	ROUSSY	PASQUIER	Cordeliers	FARABOEUF	PASQUIER	ROUSSY	Cordeliers
09:00-09:30	\nearrow	FCCee	Phy	FCCIS WP4		FCC hh		FCCIS WP3	PED/ACC:	RF Points for	Technology	
09:30-10:00	Plenary	FCCIS WP2	Performance	Econom		accelerator	PED: EPOL	Placement	FCCee EPOL	FCC-ee	Technology	
10:00-10:30	session	Chairperson	Chairperson	Chairperson		Chairperson	Chairperson	Chairperson	Chairperson	Chairperson	Chairperson	
10:30-11:00	Coffee break		Coffee	break		Coffee break			Coffee break			
11:00-11:30	Plenary	FCCee	Phy	SRF		Technology	PED:	Civil	PED/ACC:	Electricity	Technology	
11:30-12:00	0 session	FCCIS WP2	Performance	R&D		rechnology	Concepts	Engineering	FCCee MDI	and Cooling	Technology	
12:00-12:30	Chairperson	Chairperson	Chairperson	Chairperson		Chairperson	Chairperson	Chairperson	Chairperson	Chairperson	Chairperson	
12:30-14:00	Lunch break		Lunch	h break		Lunch break			Lunch break			
14:00-14:30		FCCee	Phy	Technology	ISC meeting	FCCee	PED:	FCCIS WP5	PED/ACC:	Transport &		
14:30-15:00	Plenary session	injector FEB	Performance	SRF	CLOSED	accelerator	Concepts	Collaboration	FCCee MDI	Safety		
15:00-15:30		Chairperson	Chairperson	Chairperson	F. Gianotti	Chairperson	Chairperson	Chairperson	Chairperson	Chairperson		
15:30-16:00	Chairperson	Coffee break				Coffee break			Coffee break			
16:00-16:30	Coffee break	FCCee	Phy	Technology	ISC meeting	FCCee	TI Geodesy	FCCIS WP5				France,
16:30-17:00	Plenary injector FE		Performance	SRF	CLOSED	accelerator	and survey	on				session
17:00-17:30	session	Chairperson	Chairperson	Chairperson	F. Gianotti	Chairperson	Chairperson	Chairperson				Chairperson

FCC accelerator summary and timeline

- Finalizing layouts with correct circumference
- FCC-ee baseline parameters are being established
 - Main ring substems, full-energy booster, and injector all being defined
- Technical systems making good progress
 - Vacuum, magnets, SRF, cryogenics, diagnostics, integration, ...
- Luminosity requires all systems work together in large facility
 - Still many challenges in developing robust integrated design
- Will have baseline established in 2023 and optimize further to complete feasibility study at end of 2025

SPACE FOR ADDITIONAL LOGOS

Thank you for your attention.