

SIMULATION OF FCC-EE BEAM-BEAM EFFECTS WITH XSUITE

P. Kicsiny, X. Buffat, D. Schulte, M. Seidel

Special thanks to: F. Carlier, M. Hofer, G. Iadarola, K. Oide, D. Shatilov, T. Pieloni, D. Zhou

> **FCC-week** 1st June 2022

Outline

- 1. Beam-beam effects and modeling
- 2. Benchmark highlights
- 3. Summary

Outline

Beam-beam interaction

- A particle beam represents an electromagnetic potential for other charges
- Beam acts with a force on other beam
 - Beam-beam kick: highly nonlinear
 - Harmful consequences for beam dynamics
 - Linear strength characterized by beam-beam parameter (ξ)
 - No complete theory, simulations have to be used

$$\xi_x = \frac{Nr_0\beta_x^*}{2\pi\gamma\sigma_x\sqrt{1+\left(\frac{\sigma_z}{\sigma_x}\operatorname{tg}(\Phi)\right)^2}\left(\sigma_x\sqrt{1+\left(\frac{\sigma_z}{\sigma_x}\operatorname{tg}(\Phi)\right)^2}+\sigma_y\right)}$$

Beam-beam models

- ~10⁴-10⁷ particles per bunch
- Longitudinal slicing (simplecticity)
- Interaction of slice pairs
 - > Compute kick using slice moments (Σ)
 - Update dynamical variables

Beam-beam models

- ~10⁴-10⁷ particles per bunch
- Longitudinal slicing (simplecticity)
- Interaction of slice pairs
 - > Compute kick using slice moments (Σ)
 - Update dynamical variables

In xsuite:

- Core algorithm: single slice-slice interaction
- Choice between models done by user: specifying update frequency of slice moments
- Force: soft-Gaussian kick by Bassetti-Erskine formula [1] (field solvers to be tested in future)
- Extendible with features e.g. Beamstrahlung, Bhabha scattering

N_c

[1] https://twiki.cern.ch/twiki/bin/view/ABPComputing/COMBI

- Benchmark of computation (wall clock) time using reference code COMBIp [1]
 - Beam-beam (strong-strong)
 - Linear tracking
- Avg. time per turn scales approximately with the number of longitudinal slices
- xsuite runtimes comparable to state of the art
- OpenMP and GPU acceleration are available in xsuite, to be tested in future
 - Will be needed for full scale simulations

Beamstrahlung

June 1, 2022

FCC

- Radiation emitted at collision due to deflection in the collective EM field of the opposite bunch
- Harmful effect
 - Increases bunch length (σ_z)
 & energy spread (σ_δ)
 - Decreases luminosity & beam lifetime

FCC week

Main limiting factor of FCC-ee luminosity

- Proposed setup [1]:
 - 1. Large Piwinski angle + crab waist scheme
 - Small beam size, crossing angle, crab sextupoles
 - 2. Top-up injection scheme: continuous injection of new bunches
- Maintains luminosity levels & compensates for decreased beam lifetime [1] <u>https://cds.cern.ch/record/2651299/files/CERN-ACC-2018-0057.pdf</u>

Beamstrahlung benchmark

- Benchmark against reference code GUINEA-PIG [1]
 - FCC-ee Z
 - Half crossing angle: 15e-3 [rad]
 - Beamstrahlung model OK
 - xsuite: weak-strong
 - GUINEA-PIG: strong-strong

Beamstrahlung photon spectrum / coll.

- Possibility to generate photons for external use [2]
- TODO: come up with an efficient model of Bhabha scattering

<u>https://twiki.cern.ch/twiki/bin/view/ABPComputing/Guinea-Pig</u>
 <u>https://xsuite.readthedocs.io/en/latest/internal_record.html#internal-record-for-elements-used-in-standalone-mode</u>

Finding optimal working points:

• Tune scans: FCC-ee Z **weak-strong** tracking including synchrotron radiation + Beamstrahlung

 Blowup of transversal emittances due to beam-beam (crab sextupole to be added)

Work ongoing!

Summary

Work so far

- Beam-beam model development & benchmarks
- Beamstrahlung: photon generation available
- Update github repository [1] expected in a few days

Work ongoing

- Crab sextupoles
- Interplay with real lattice model
- Bhabha scattering
- Top-up injection
- ➢ 3D flip-flop

Other xsuite features targeted

- Impact of lattice imperfections (misalignment, orbit and optics corrections)
- Multiple IPs
- Monochromatization
- Wakefields

More on xsuite by T. Pieloni & F. Carlier @ this workshop

Thank you!

[1] https://github.com/xsuite

3) Summary

○ FCC

BACKUP

Simulation parameters

	Runtime benchmark (slide #5)	Beamstrahlung energy spectrum (slide #7)	Tune scan (slide #8)
N slices	scanned	200	200
N macroparticles	1e6	1e5	1e3
N turns	10	1	5e4
Half crossing angle [rad]	0	15e-3	15e-3
ε _x /ε _y [m]	2.68e-10 / 2.68e-10	2.7e-10 / 2.7e-12	2.7e-10 / 1e-12
β _x /β _y [m]	1 / 1	0.15 / 0.15	0.15 / 8e-4
Beamstrahlung	OFF	ON	ON
Beam profile	HL-LHC round Gaussian	FCC-ee flat Gaussian	FCC-ee flat Gaussian
xsuite beam-beam model	strong-strong	weak-strong	weak-strong

Backup

Beamstrahlung benchmarks

https://accelconf.web.cern.ch/ipac2016/papers/wepmw010.pdf

Avg. num. of emitted BS photons / e⁻ / coll.

- Single weak-strong beam-beam collision; look at num. of emitted photons & E loss
- xsuite simulated quantities converge (within 10%) to analytical estimates [1]