

Jet-Flavour Tagging at Future e⁺e⁻ Colliders

Kunal Gautam

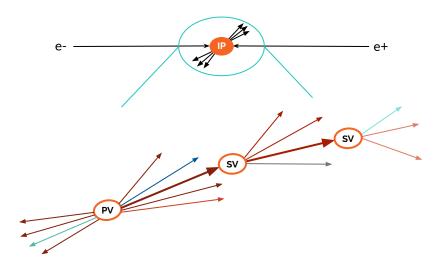
FCC Week | 31.05.22

with contributions from

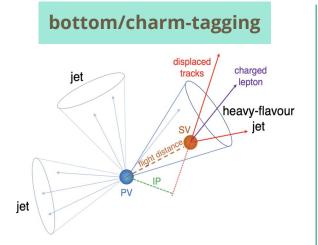
M. Basso, F. Badeschi, F. Blekman, V. Cairo, F. Canelli, A. De Moor, A. Macchiolo, L. Gouskos, A. Ilg, E. Plörer, M. Selvaggi

Motivation

- Jet-flavour tagging is a very important tool for studies with hadronic final states (e.g. Higgs couplings).
- Many well-performing jet-flavour tagging algorithms have been employed at the LHC experiments.
- Expect to do better at the future e+e- colliders (due to a cleaner environment etc.)
- Flavour tagging is a good tool to set detector requirements and to test detector performance.
- Improvement in tagging efficiency and accuracy with the use of advanced ML based algorithms.



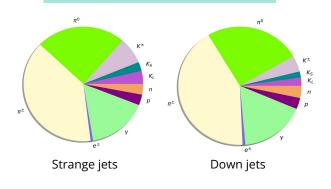
Basics of Jet Flavour Identification



Important Variables:

- Significant lifetimes
- Displaced vertices/tracks
- Large track multiplicities
- Non-isolated *e*/µ

strange-tagging



Important Variables:

- Different Kaon and pion multiplicities
 - K/ π separation
 - V⁰ reconstruction

Detector Requirements:

Vertex/Tracking detectors

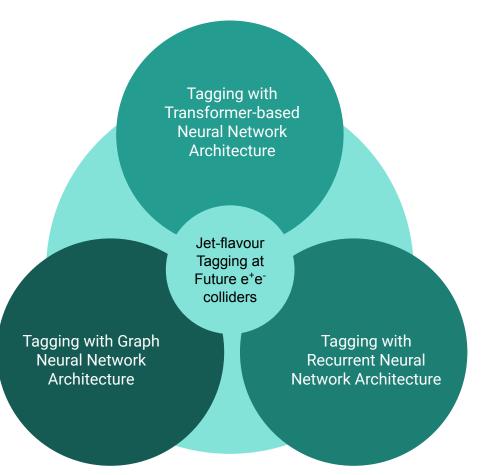
- Spatial resolution
- Precise Track alignment

PID detectors

- Timing capabilities
- Energy loss or cluster counting

Three Taggers

- Presented in this talk are three jet-flavour tagging algorithms that use different neural networks to tackle the problem of identifying the flavour of jets.
- All of them exploit sets of properties described before in order to differentiate between jet-flavours.
- One tagger trained on $Z \rightarrow qq$ samples, other two on $H \rightarrow qq/gg$



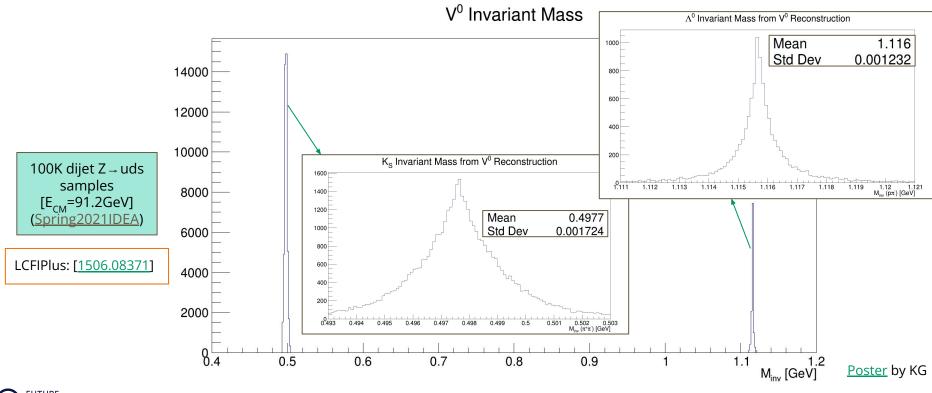
F. Blekman, F. Canelli, A. De Moor, K. Gautam, A. Ilg, A. Macchiolo, E. Plörer

Tagging with Transformer-based Neural Network

Multi-class tagger for FCCee

V⁰ Reconstruction

Based on our <u>studies</u> presented in FCC Physics Workshop'22, it was concluded that V⁰ ($K_s \& \Lambda^0$) reconstruction and PID improve s-tagging performance.



Kunal Gautam | Jet-Flavour Tagging | FCC Week | 31.05.22

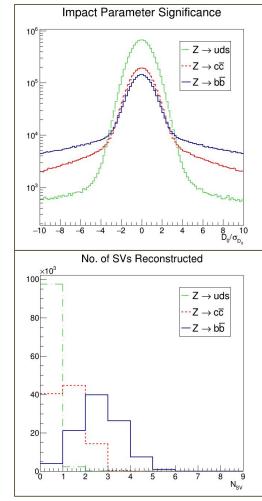
6

Input Features

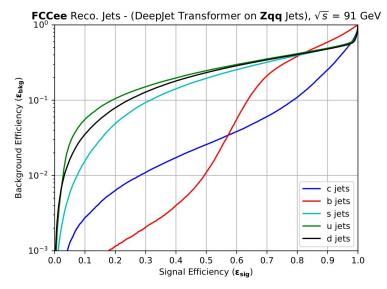
Trained on $Z \rightarrow qq$ samples - centrally generated FCCee samples (<u>Spring2021</u>) with IDEA fast-simulation using FCCAnalyses

- Jet-level variables
- PF Variables
 - Charged
 - Neutral
- Secondary vertex variables
 - SVs reconstructed using the implementation of the vertexing module of LCFIPlus
- V⁰ variables
 - Reconstructed

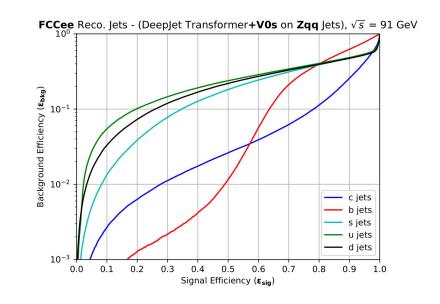
Flavour association done using particles in the decay chain: for details refer to <u>talk</u> at FCC Physics Performance meeting



Performance



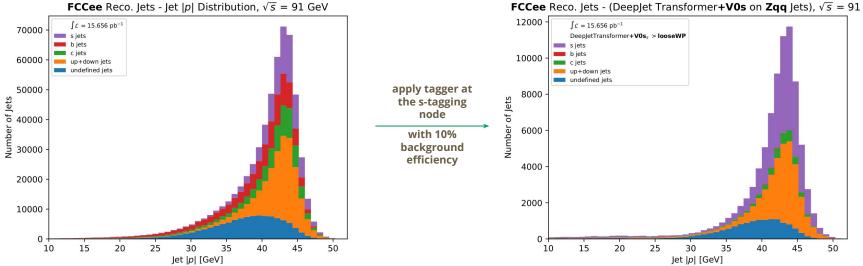
- The background for each jet flavour consists of every other flavour combined.
- Samples do not contain V⁰s.



• Few percent improvement in s-tagging after adding V⁰s, as was expected from our <u>previous studies</u>.

Performance

Preliminary Results



FCCee Reco. Jets - (DeepJet Transformer+V0s on Zqq Jets), $\sqrt{s} = 91$ GeV

- For **s-tagging**, **ud-jets** consist the majority of the **background**.
- PID variables are **required** for further improvement in **ud-jet rejection**.

Poster by E.Plörer

Franco Bedeschi, Loukas Gouskos, Michele Selvaggi [2202.03285]

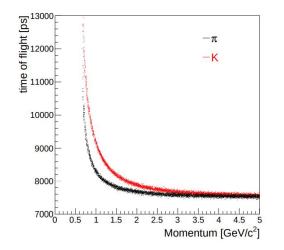
Tagging with Graph Neural Network

ParticleNetIDEA Multi-class tagger for e⁺e⁻ colliders

Particle Identification

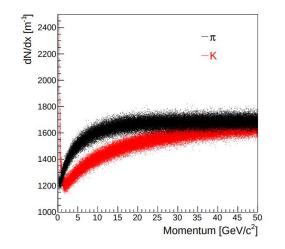
Time of Flight

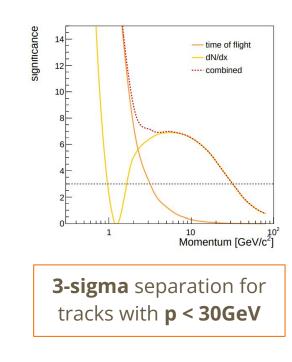
• Good *K*/*π* separation at low momenta



Cluster Counting

• Count number of primary ionization clusters along track path

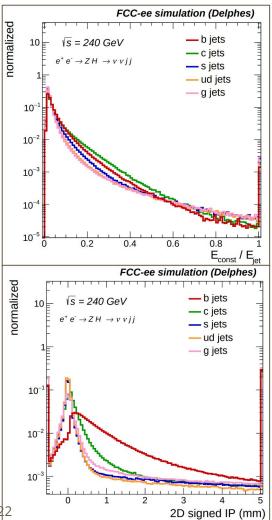




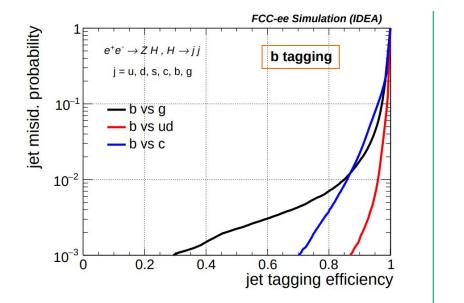
Input Features

Trained on $(Z \rightarrow inv)(H \rightarrow qq/gg)$ samples with IDEA fast-simulation, where jets are represented as unordered set of particles

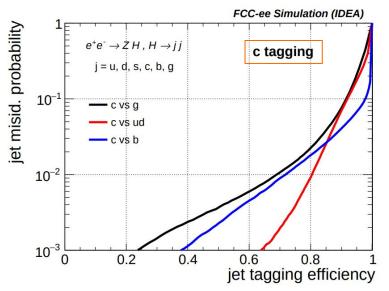
- Kinematic Variables
 - Features derived from the momentum of each jet-constituent
- Displacement Variables
 - Observables related to the longitudinal and transverse displacement of the jet-constituents
 - More **relevant** to identify **b & c jets**
- Identification Variables
 - Nature of each particle using the PF reconstruction and PID using ToF & dN/dx
 - **PID** important to identify **s jets**



3 pixel layers PID: dN/dx + ToF (30ps)

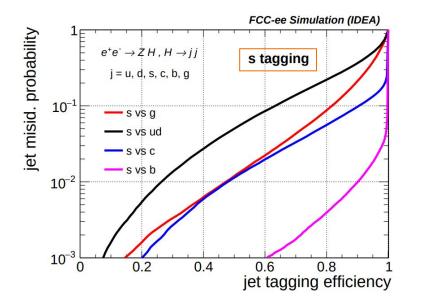


For **high-purity** region, **gluon jet rejection** is **worse** than c-jet rejection due a significant probability of **gluon splitting**

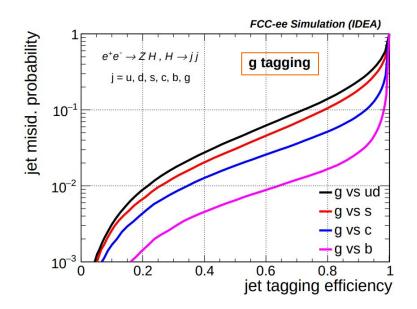


For **high-efficiency** region, b-jet discrimination is the **most effective** due to **difference in lifetimes** of B and D mesons.

3 pixel layers PID: dN/dx + ToF (30ps)

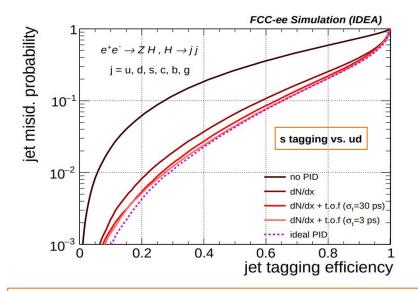


Discrimination against **ud-jets** is the most **challenging** since the algorithm mainly relies only on **PID-related variables**.



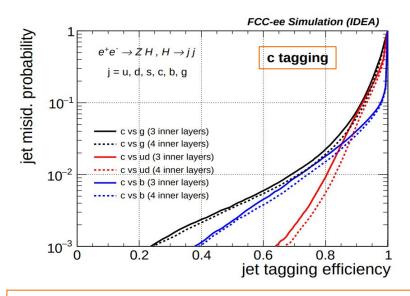
Rejection of **ud-jets** is the most **challenging** due to **similar particle displacements** and nature.

Performance with Different Detector Design



Impact of PID on s-tagging performance:

- dN/dx brings most of the gain
- Additional gain with ToF
- Performance with dN/dx + ToF (30 ps) is very close to perfect PID



Impact of inner tracking geometry on c-tagging performance:

- **2x** improved background rejection with an **additional pixel layer**
- marginal/no improvement in b-tagging

Matthew J. Basso, Valentina M. M. Cairo et al. Snowmass : [2202.03285]

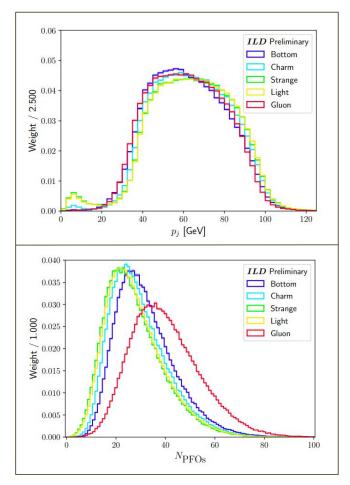
Tagging with Recurrent Neural Network

Multi-class tagger for ILC

Input Features

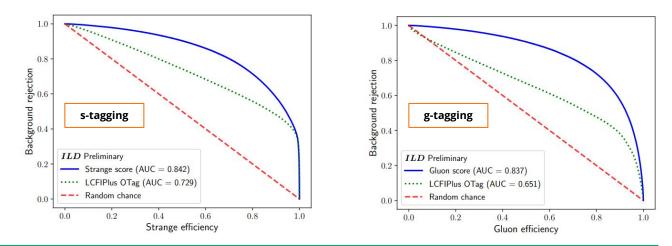
Trained on $(Z \rightarrow inv)(H \rightarrow qq/gg)$ samples with ILD full-simulation

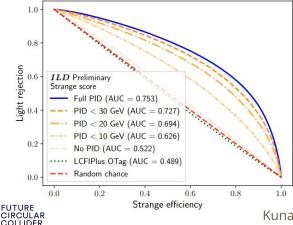
- Jet-level Variables
 - Kinematics
 - LCFIPlus tagger results
 - PFO multiplicities
- Variables for 10 leading particles in jets
 - Kinematics
 - Charge
 - PID truth likelihoods (representing the best-case scenario)



Performance

Significant improvement in strange and gluon tagging over ILC baseline tagger LCFIPlus





- No PID to PID < 10 GeV at fixed mistag rate: efficiency increases by almost 20%
- No PID to PID < 30 GeV at fixed mistag rate: efficiency doubles

Proposed a compact RICH detector for PID

- Efficient jet-flavour tagging algorithms are essential for future e⁺e⁻ colliders.
- Flavour tagging algorithms from LHC experiments are inspiring tagging efforts being conducted for future colliders like FCCee.
- Improved performance with the use of advanced ML models and additional properties:
 - \circ V⁰ reconstruction (K_s & Λ^0)
 - PID capabilities (cluster counting, ToF, compact RICH, etc)

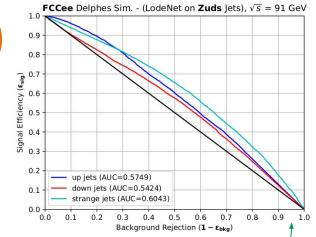
Outlook

- Vertexing and PID improve performance of individual taggers, should work on common ntuples with all available variables (?)
- Testing all taggers at the same baseline process

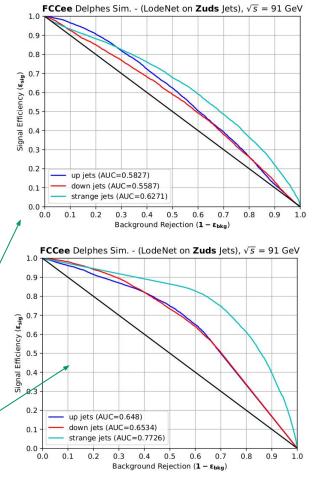
and thanks for all the fish

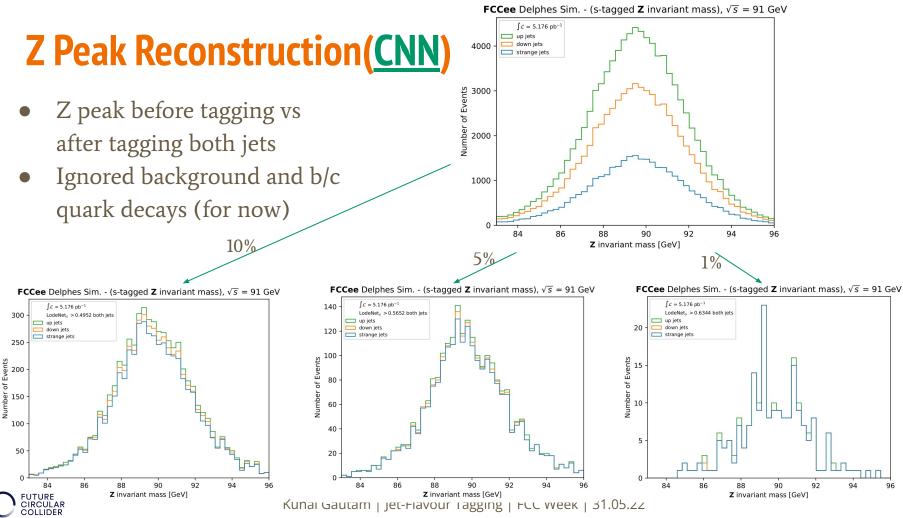
Performance(CNN)

Three working points defined at fake rates of **10%**, **5%**, and **1%**, respectively



Signal Efficiency	10% fake rate	5% fake rate	1% fake rate
Generator	47.2%	27.7%	7.5%
PF only	17.7%	9.7%	2.0%
PF + K _s	21.9%	12.9%	4.4%
PF + K _s + K [±]	39.5%	24.8%	7.0%



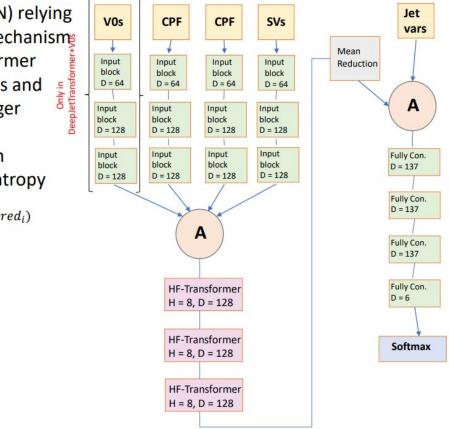


Transformerbased NN

Network architecture

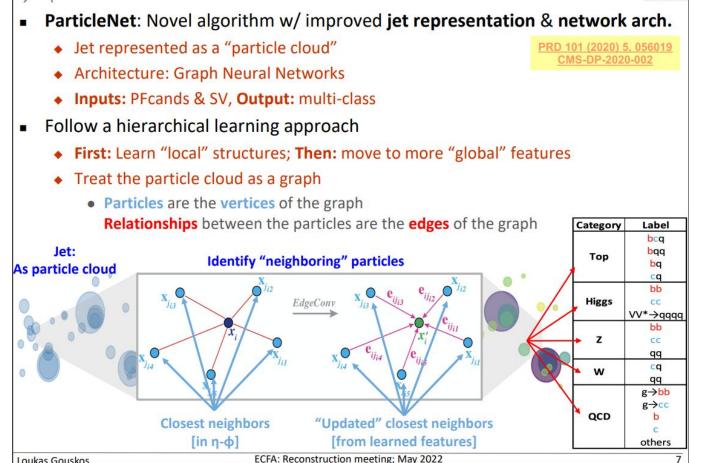
Neural Network (NN) relying on "attention^[1]" mechanism dubbed HF-Transformer Trained for n epochs and optimized with ranger optimizer^[2] Loss computed with categorical cross-entropy $Loss = -\sum_{i=1}^{n} truth_i \times \ln(pred_i)$

Poster by E. Plörer



DeepJetTransformer(+V0s)

Pushing the limits in jet tagging



Loukas Gouskos

CMS

RNN Architecture (ILD)

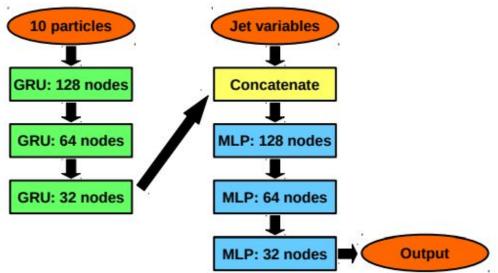


Figure 3: A cartoon of the network architecture used for the jet flavour tagger ANN. The arrows denote the flow of vectors through the network.

Performance (ILD)

