
Top physics opportunities at FCC-ee

Philipp Roloff (CERN) 31/05/2022

<text><text><text><text>

Introduction: FCC-ee energy stages

Relevant for top-quark physics:

<u>240 GeV ("HZ"):</u> • FCNC using $e^+e^- \rightarrow tq$

350 GeV ("ttr"):

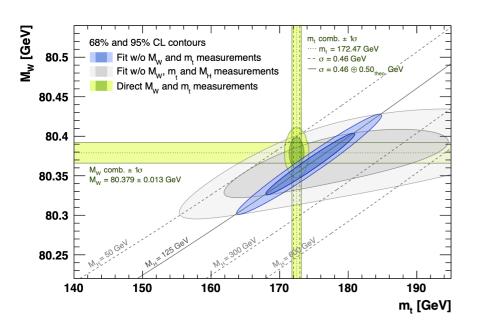
• Threshold scan for top-quark mass, width, Yukawa coupling, ...

<u>365 GeV:</u>

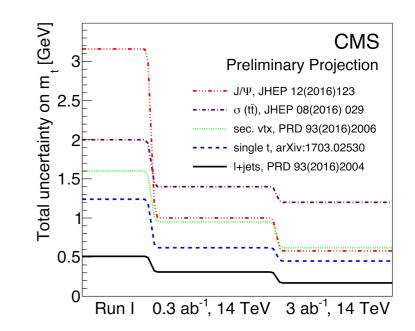
- O(1 million) top-quark pairs
- Electroweak couplings
- FCNC using $e^+e^- \rightarrow tq$ and decays in $e^+e^- \rightarrow t\bar{t}$
- Mass from radiative events?

This project is supported from the European Union's Horizon 2020 research and innovation programme under grant agreement No 951754. → Large amount of complementarity

FCC CDR Volume 2


Philipp Roloff

Outline

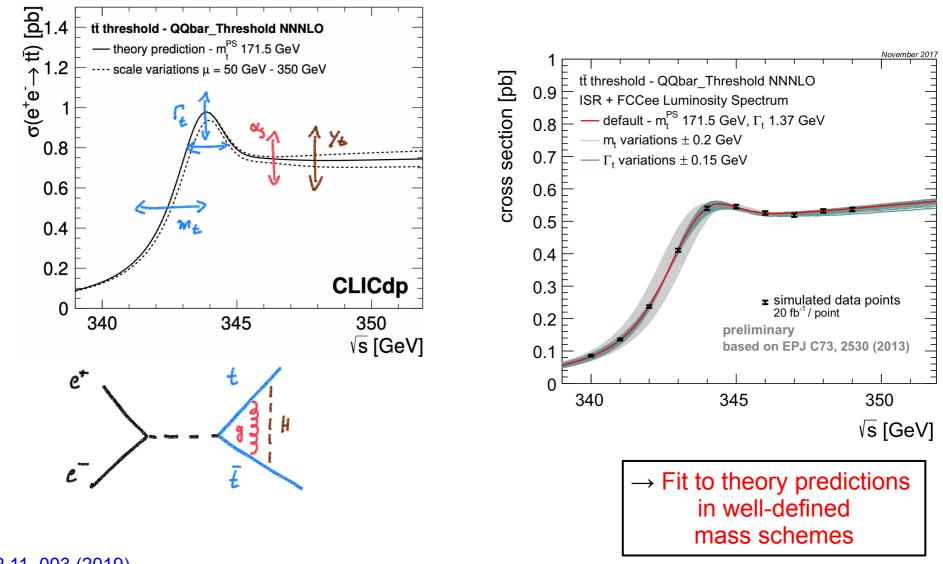

Top-quark at FCC-ee:

- Mass measurements
- Electroweak couplings
- Top-quark FCNC
- Common reconstruction issues
- EFT interpretations

Top-quark mass

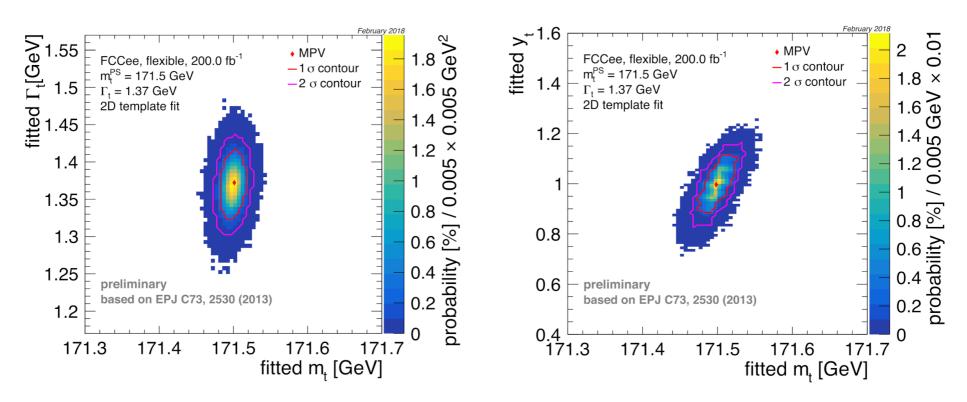
Direct and indirect constraints on top (and W) mass

Complementary methods at e⁺e⁻ collider:


- Threshold scan
- Radiative events
- MC mass from direct reconstruction

EPJ **C 78**, 675 (2018) CERN-LPCC-2018-03

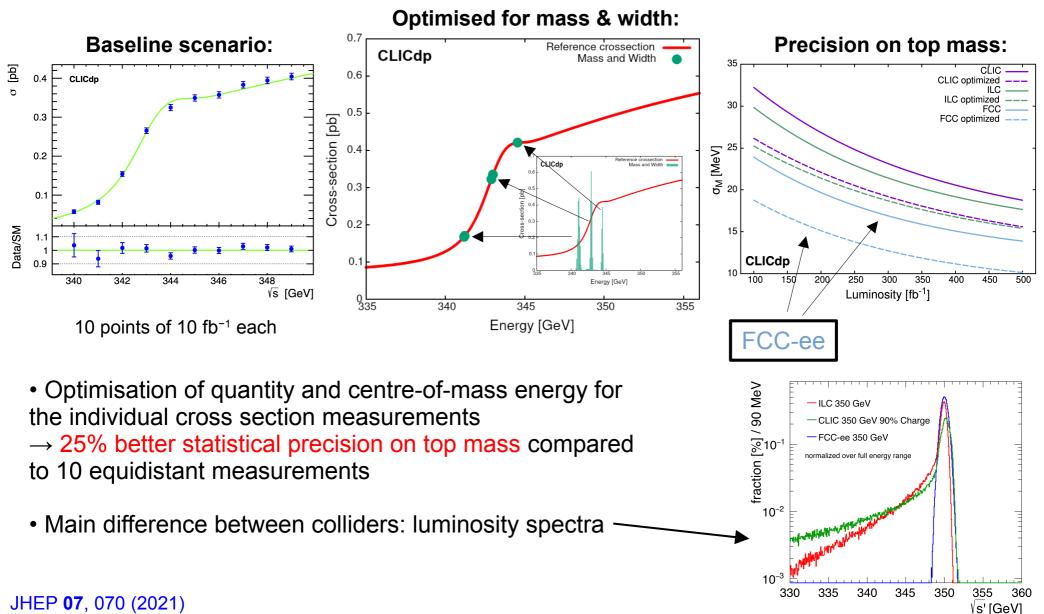
31/05/2022


Philipp Roloff

Top-quark pair production at threshold

JHEP 11, 003 (2019) FCC CDR Volume 3

Measurements at the threshold


- Statistical uncertainty on m_t (Γ_t) is 17 (45) MeV for 200 fb⁻¹
- Theory uncertainty from current NNNLO calculations: ≈40 MeV
- 3 MeV uncertainty on mt from centre-of-mass energy (if known with precision better than 10 MeV),
- 5 MeV from α_s (assuming precision of 2 x 10⁻⁴ from lower energies)
- 10% precision on the top Yukawa coupling possible
- Potential improvement on top mass from differential distributions → needs further study

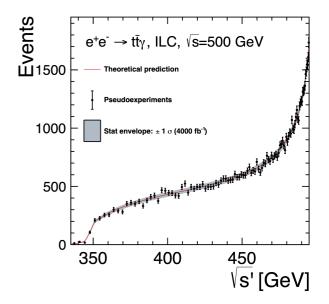
FCC CDR Volume 3

31/05/2022 Philipp

Philipp Roloff

Optimisation of the threshold scan

31/05/2022


Radiative events: $e^+e^- \rightarrow t\bar{t}\gamma$

 Radiative events allow to extract the top mass in a well-defined mass scheme above threshold
 → complementary to threshold scan

Example: matched NNLL threshold + N³LO continuum calculation and CLIC/ILC luminosity spectra
 → limited by statistical uncertainty

 \rightarrow Interesting possibility to explore for FCC-ee as well

cms energy	CLIC, \sqrt{s}	$= 380 \mathrm{GeV}$	ILC, $\sqrt{s} = 500 \text{GeV}$			
luminosity $[fb^{-1}]$	500	1000	500	4000		
statistical	$140\mathrm{MeV}$	$90\mathrm{MeV}$	$350\mathrm{MeV}$	$110\mathrm{MeV}$		
theory	46	MeV	$55\mathrm{MeV}$			
lum. spectrum	201	MeV	$20{ m MeV}$			
photon response	16	MeV	$85\mathrm{MeV}$			
total	$150\mathrm{MeV}$	$110\mathrm{MeV}$	$360\mathrm{MeV}$	$150\mathrm{MeV}$		

PLB 804, 135353 (2020)

Philipp Roloff

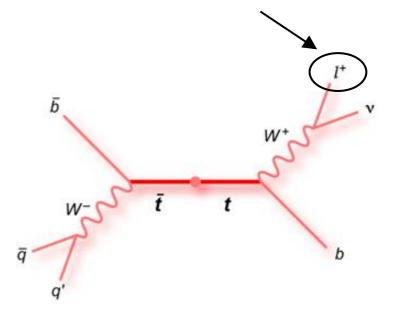
Outline

Top-quark at FCC-ee:

- Mass measurements
- Electroweak couplings
- Top-quark FCNC
- Common reconstruction issues
- EFT interpretations

Top-quark electroweak couplings

- Top quark pairs are produced via Z/γ^* in electron-positron collisions
- The general form of the coupling can be described as:


arXiv:hep-ph/0601112

CPV

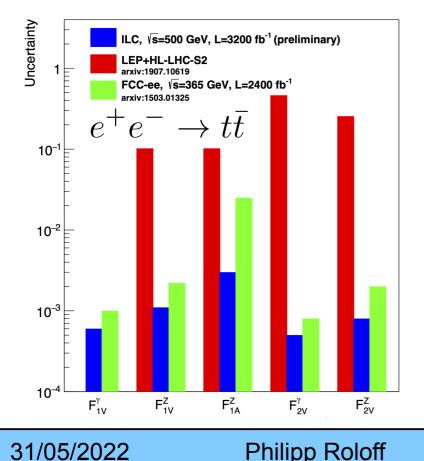
$\Gamma^{ttV}_{\mu}(k^2, q, \bar{q}) = -ie \left\{ \gamma_{\mu} \left(F^V_{1V}(k^2) + \gamma_5 F^V_{1A}(k^2) \right) + \frac{\sigma_{\mu\nu}}{2m_t} \left(q + \bar{q} \right)^{\nu} \left(iF^V_{2V}(k^2) + \gamma_5 F^V_{2A}(k^2) \right) \right\}$

CP conserving

• The γ and Z contributions can also be separated using the lepton energy and angular distributions in semi-leptonic events \rightarrow Form-factor measurement possible at circular colliders with unpolarised beams

Philipp Roloff

Sensitivity to form factors (1)


- Top quark pairs are produced via Z/γ^* in electron-positron collisions
- The general form of the coupling can be described as:

CP conserving

arXiv:hep-ph/0601112

CPV

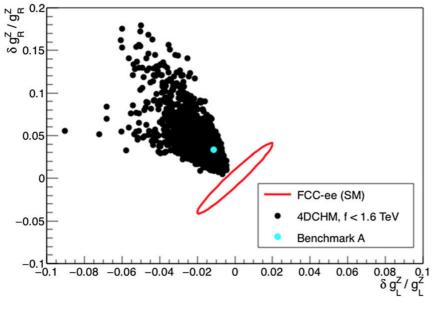
$$\Gamma^{ttV}_{\mu}(k^2, q, \bar{q}) = -ie \left\{ \gamma_{\mu} \left(F^V_{1V}(k^2) + \gamma_5 F^V_{1A}(k^2) \right) + \frac{\sigma_{\mu\nu}}{2m_t} \left(q + \bar{q} \right)^{\nu} \left(iF^V_{2V}(k^2) + \gamma_5 F^V_{2A}(k^2) \right) \right\}$$

 \rightarrow FCC-ee provides significant improvement compared to HL-LHC

- Generator-level study, results confirmed by full simulation
- For example sensitive to composite Higgs models
- ttZ coupling from FCC-ee needed as input for top-Yukawa measurement at FCC-hh
- Further improvement possible, e.g. from addition of fully hadronic final states

JHEP 04, 182 (2015) R. Pöschl, EPS-HEP 2021

Sensitivity to form factors (2)


- Top quark pairs are produced via Z/γ^* in electron-positron collisions
- The general form of the coupling can be described as:

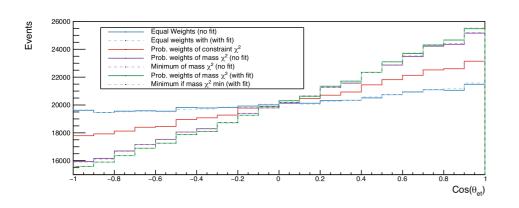
CP conserving

arXiv:hep-ph/0601112

CPV

$$\Gamma^{ttV}_{\mu}(k^2, \, q, \, \bar{q}) = -ie \left\{ \gamma_{\mu} \left(F^V_{1V}(k^2) + \gamma_5 F^V_{1A}(k^2) \right) + \frac{\sigma_{\mu\nu}}{2m_t} \left(q + \bar{q} \right)^{\nu} \left(iF^V_{2V}(k^2) + \gamma_5 F^V_{2A}(k^2) \right) \right\}$$

FCC CDR Volume 1


31/05/2022

 \rightarrow FCC-ee provides significant improvement compared to HL-LHC

- Generator-level study, results confirmed by full simulation
- For example sensitive to composite Higgs models
- ttZ coupling from FCC-ee needed as input for top-Yukawa measurement at FCC-hh
- Further improvement possible, e.g. from addition of fully hadronic final states

Philipp Roloff

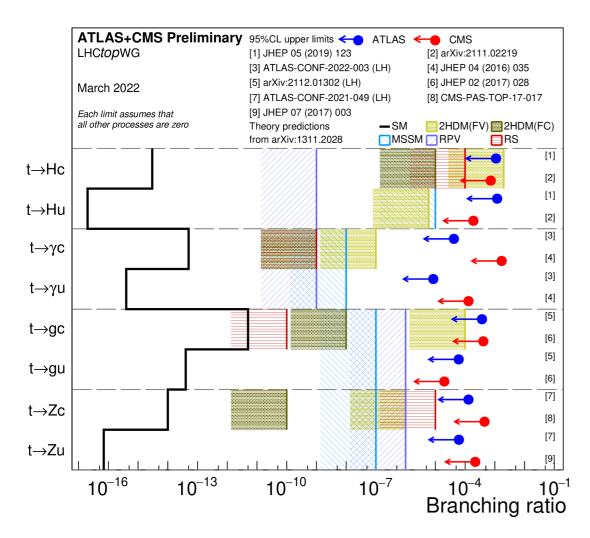
Ongoing study

$$\begin{aligned} \mathcal{L}_{Wtb} &= -\frac{g}{\sqrt{2}} \bar{b} \gamma^{\mu} (\underbrace{V_L} P_L + \underbrace{V_R} P_R) t W_{\mu}^{-} \\ &- \frac{g}{\sqrt{2}} \bar{b} \frac{i \sigma^{\mu\nu} q \nu}{M_W} (\underbrace{g_L} P_L + \underbrace{g_R} P_R) t W_{\mu}^{-} + H.c. \\ \mathcal{L}_{Ztt} &= -\frac{g}{2c_W} \bar{t} \gamma^{\mu} (\underbrace{X_{tt}^L} P_L + \underbrace{X_{tt}^R} P_R - 2s_W^2 Q_t) t Z_{\mu} \\ &- \frac{g}{2c_W} \bar{t} \frac{i \sigma^{\mu\nu} q \nu}{M_Z} (\underbrace{d_V^Z} + i \underbrace{d_A^Z} \gamma_5) t Z_{\mu} \\ \mathcal{L}_{\gamma tt} &= -eQ_t \bar{t} \gamma^{\mu} A_{\mu} - e\bar{t} \frac{i \sigma^{\mu\nu} q \nu}{m_t} (\underbrace{d_V^\gamma} + i \underbrace{d_A^\gamma} \gamma_5) t A_{\mu} \end{aligned}$$

- Delphes samples
- Comparison of different jet
 reconstruction algorithms
- Kinematic fit implemented
- Preliminary projections on single anomalous couplings from angular distributions

Julie Munch Torndal Jorgen Beck Hansen

31/05/2022


Philipp Roloff

Outline

Top-quark at FCC-ee:

- Mass measurements
- Electroweak couplings
- Top-quark FCNC
- Common reconstruction issues
- EFT interpretations

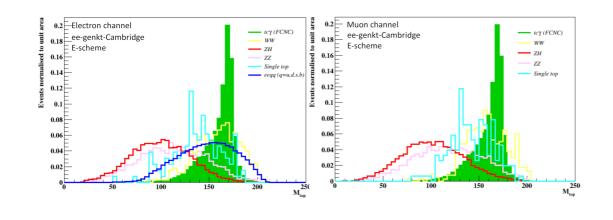
Top-quark FCNC: current status

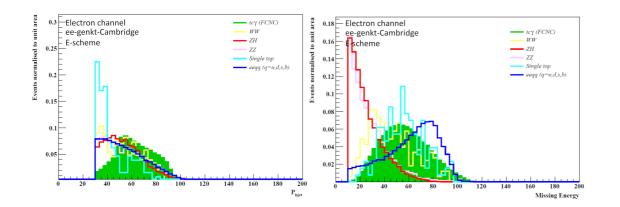
 SM branching ratios strongly suppressed (10⁻¹⁶...10⁻¹²)
 → strong enhancement in certain BSM models possible (update needed?)

• Current 95% CL limits typically at the level of 10^{-5} to 10^{-3}

Top-quark FCNC at FCC-ee

e⁺e⁻ colliders especially competitive for: $t \rightarrow cH$, $t \rightarrow cZ$, $t \rightarrow c\gamma$, $t \rightarrow cg$


In top-quark decays:


In single top production:

- Preliminary results indicate that combination of both energies and approaches desirable to improve with respect to HL-LHC
- The ultimate precision will be achieved at FCC-hh

Ongoing study

• Recently started, focussing on single top production at 240 GeV

• Delphes samples, different jet algorithms compared

• First projections from cut-and-count approach, to be improved using multi variate analysis

> Hamzeh Khanpour Seddigheh Tizchang Mojtaba Mohammadi Patrizia Azzi Emmanuel Francois Perez

31/05/2022

Philipp Roloff

Outline

Top-quark at FCC-ee:

- Mass measurements
- Electroweak couplings
- Top-quark FCNC
- Common reconstruction issues
- EFT interpretations

Common reconstruction aspects

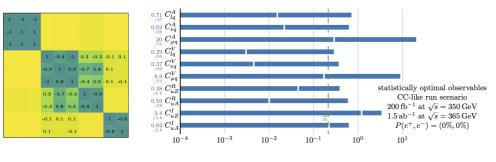
• Jet reconstruction: all state-of-the-art clustering algorithms available in FastJet (Durham, generalised k_t, Valencia, ...) https://fastjet.fr/

• Flavour tagging: LCFIPlus (originally developed for linear collider studies), new developments based on ParticleNet very promising in fast simulation Charm tagging important for FCNC decays Nucl. Inst. Meth. A 808, 109 (2016) arXiv:2202.03285

• Kinematic fits: MarlinKinFit (from linear collider studies), ABCfit++ (ported from LEP algorithm) Inclusion of ISR from energy loss can be important above threshold https://github.com/Torndal/ABCfitplusplus NIM A 624, 184 (2010)

- Charged lepton identification: for semi-leptonic tt events
- Photon identification: for radiative $t\bar{t}$ events, $t \rightarrow c\gamma$, ...

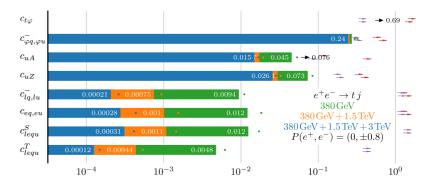
→ see also talks by Clément Helsens, Valentin Volkl


Outline

Top-quark at FCC-ee:

- Mass measurements
- Electroweak couplings
- Top-quark FCNC
- Common reconstruction issues
- EFT interpretations

Global EFT interpretations


Global EFT analyses of EW analyses of e⁺e⁻ → tt
 tr
 <pttr
 <p>tr
 <pttr
 <p>tr
 <prtr>

Top-quark electroweak couplings

JHEP 10, 168 (2018)

Top-quark FCNC: example from CLIC

CERN-2018-009-M

NB: This example uses "statistically optimal observables" which make the best use of the fully differential bW⁺bW⁻ distributions

• To be optimised for FCC-ee conditions (large statistics,

but no beam polarisation) and projections

• Combined FCC-ee + FCC-hh EFT analysis would be very interesting (also for comparison with other collider options...)

Ongoing study

 $O^{\overline{\mathrm{SM}}}$

 $\frac{\partial}{\partial C_i}$

		1 1 10	0 0 7 9	0.0	0.010	0.070	0.000	1 000	0.00			
$A_{\rm FB}$	0.0	1.149	0.873	0.0	0.049	0.072	0.388	1.669	0.98			
$\sigma_{tar{t}}$	0.0	2.281	1.806	0.0	0.019	0.014	0.783	1.094	0.708	1	0 F	
$\sigma_{t\bar{t}b\bar{b}}$	0.003	2.196	1.743	0.0	0.022	0.009	0.812	0.98	0.627	-1	2.5	
$\sigma_{t\bar{t}\ell\bar{\ell}}$	0.0	2.187	1.715	0.0	0.0	0.0	0.681	0.971	0.642			
$\sigma_{t\bar{t}+q/g}$		1.451	1.149	0.0	0.054	0.032	1.097	0.052	0.119			
σ_t	0.0	0.598	0.0	0.235	0.003	0.0	0.0	0.0	0.0			(0)
Γ_t	0.0	0.166	0.0	0.121	0.0	0.0	0.0	0.0	0.0	-1	0.0	\smile
F_{R}	0.0	0.133	0.0	0.0	0.0	0.0	0.0	0.0	0.0			
$F_{\rm L}$	0.0	0.206	0.0	0.0	0.0	0.0	0.0	0.0	0.0			$\overset{i.}{O}$
$\overline{F_0}$	0.0	0.086	0.0	0.0	0.0	0.0	0.0	0.0	0.0			\mathcal{O}
B_{r^-}	0.0	1.024	1.481	0.0	0.0	0.0	2.308	1.242	0.106			-1
$egin{array}{c} B_{r^{+}} \ B_{k^{-}} \ B_{k^{+}} \ C_{kk} \ \end{array}$	0.0	1.229	1.77	0.0	0.0	0.0	2.128	1.658	0.442	-7	1.5 MS	
$B_{k^{-}}$	0.0		5.872	0.0	0.0	0.0	13.894	8.444	0.585		<u> </u>	z
B_{k^+}	0.0	2.249	6.539	0.0	0.0	0.0	12.474	7.614	0.641			SM C
C_{kk}	0.0	0.323	0.293	0.0	0.0	0.0	-0.053	0.095	0.104			
C_{rr}	0.0	0.121	0.125	0.0	0.0	0.0	0.068	0.121	0.108	-5	0 0	1
C_{nn}	0.0	1.811	0.891	0.0	0.0	0.0	0.446	0.895	0.581	- 5	.0 _	<u> </u>
C_{rk}	0.0	0.095	0.125	0.0	0.0	0.0	0.064	0.077	0.047			_ - :
C_k	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0		C	°ol≻
C_{nr}	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0			
$-C_r$	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	-2	.5	
C_{kn}	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0			
C	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0			
A_{aas}^{lab}	0.0	0.131	0.18	0.0	0.0	0.0	0.328	0.196	0.03			
$A^{\operatorname{lab}^n}_{ \Delta\phi_{\ell\ell} }$	0.0	0.137	0.208	0.0	0.0	0.0	0.655	0.176	0.175			
ti.	\mathcal{O}_{tG}	\mathcal{O}_{tW}	\mathcal{O}_{tZ}	$\mathcal{O}^{(3)}$	$O^{(-)}$	$\mathcal{O}_{\varphi t}$	$\mathcal{O}^{(1)}$	$\mathcal{O}^{(1)}$	$\mathcal{O}^{(1)}$	0		
				$\mathcal{O}_{arphi q}^{(0)}$	$\mathcal{O}_{arphi q}$		$\mathcal{O}_{te}^{(1)}$	$\mathcal{O}_{tl}^{(1)}$	$\mathcal{O}_{qe}^{(1)}$			
Generator-level (MadGraph)												

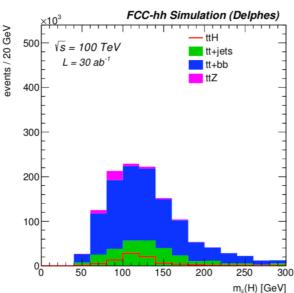
- New study of EFT-sensitive tt observables at FCC-ee
- Global fit is final aim
- Transition to Whizard planned
- Started to look at reconstructed observables with Delphes samples

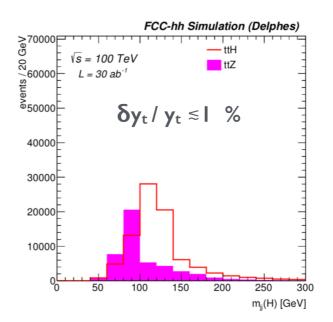
Cornelius Grunwald Laetitia Guerry Kevin Kröninger **Romain Madar Stéphane Monteil** Lars Röhrig

Summary and conclusions

- The top-quark plays a crucial role at FCC-ee below, at and above the pair-production threshold
- <u>Well-defined program:</u>
- A threshold scan is the best possible mass measurement
- Operation well above threshold improves the top-quark EW couplings by at least an order of magnitude
- Top-quark FCNC-effects can be problem in single-top production and in decays
- Interesting reconstruction issues to be studied in ongoing and future physics potential studies, in particular kinematic fitting and jet reconstruction in complex events
- Top-quark production would also be a good detector benchmark channel in full simulation
- Global EFT interpretations to be adopted and optimised for FCC-ee

Thank you!


Backup slides


Philipp Roloff

top-Yukawa coupling at FCC-hh

- production ratio $\sigma(ttH)/\sigma(ttZ) \approx y_t^2 y_b^2/g_{ttZ}^2$
- measure $\sigma(ttH)/\sigma(ttZ)$ in $H/Z \rightarrow bb$ mode in the boosted regime, in the semi-leptonic channel
- perform simultaneous fit of double Z and H peak
- (lumi, scales, pdfs, efficiency) uncertainties cancel out in ratio
- assuming g_{ttZ} and κ_b known to 1% (from FCC-ee),

 \rightarrow measure y_t to 1%

100

Michele Selvaggi

31/05/2022

Philipp Roloff

Top physics opportunities at FCC-ee

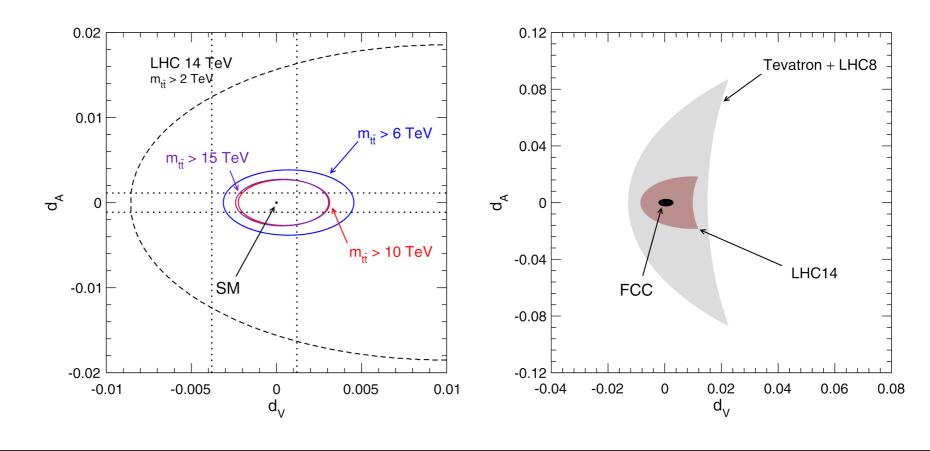
25

 $\frac{1}{t} + \frac{t}{t} + \frac{t}{t} + \frac{t}{t} + \frac{t}{t}$

ttΖ

ttH

т. - ...н +

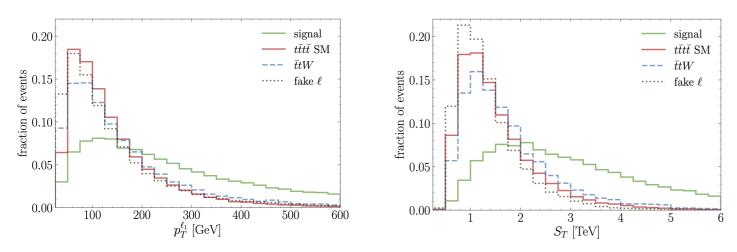

Anomalous top-gluon couplings from pp $\rightarrow t\bar{t}$

Strongly boosted:

 $m_{t\bar{t}}$ > 10 TeV is optimal choice from cross section analysis

$$\delta \mathcal{L} = \frac{g_s}{m_t} \, \bar{t} \sigma^{\mu\nu} \left(d_V + \mathbf{i} \left(d_A \gamma_5 \right) \frac{\lambda_a}{2} \, t \, G^a_{\mu\nu} \right)$$

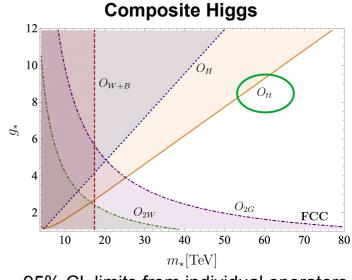
d_V(d_A): chromomagnetic (chromoelectric) diplole moment



FCC-hh CDR

31/05/2022

Philipp Roloff


$pp \rightarrow t\bar{t}t\bar{t}$ at FCC-hh

Example: same-sign di-lepton final state

FCC-hh: same-sign di-lepton and tri-lepton final states combined

95% CL limits from individual operators

JHEP 02, 043 (2021)

31/05/2022

Philipp Roloff