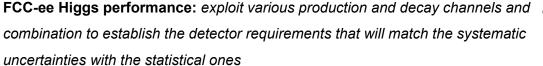
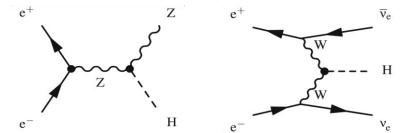
Higgs Performance at FCC-ee

Jan Eysermans Massachusetts Institute of Technology

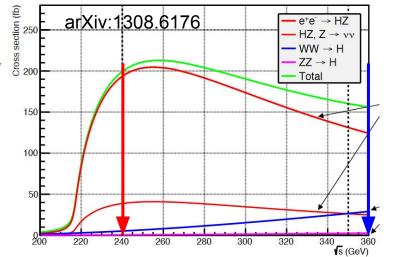
FCC Week – May 31 2022

Higgs Physics potential @ FCC-ee


FUTURE CIRCULAR COLLIDER


FCC-ee offers broad potential for precision Higgs measurements

- Higgs factory: production of million Higgs bosons
- Clean environment
- Relative small backgrounds, high S/B


Main production mechanisms

- **ZH production** "Higgs–strahlung" also used for light scalar at the Z-pole
- Vector boson fusion (VBF), WW dominant

Higgs production @ FCC-ee			
Threshold ZH productio		VBF production	
240 GeV / 5 ab ⁻¹	1e6	2.5e4	
^H 3895 ⁶ GeV / 1.5 ab ⁻¹	2e5	5e4	

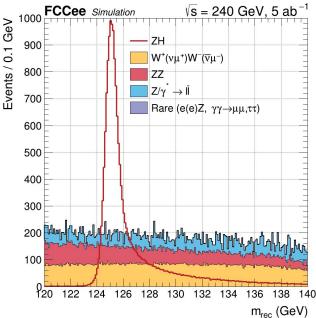
Strategy and challenges

Highest precision obtained from ZH analyses @ 240 GeV

Main strategy of such analyses based on recoil method

- Tag the Z boson (tight invariant mass constraints) using leptons or jets
- Compute recoil, distribution sharp peaked at Higgs mass, width dominated by detector resolution $m_{m_{envel}}^2 = (\sqrt{s} E_{ff})^2 p_{ff}^2$

$$\begin{aligned} E_{recoil}^2 &= \left(\sqrt{s} - E_{ff}\right)^2 - p_{ff}^2 \\ &= s + m_Z^2 - 2E_{ff}\sqrt{s} \approx m_H^2 \end{aligned}$$


- Either fit and/or apply cuts on recoil distribution

Backgrounds: dominated by vector boson (pair) production (WW, ZZ) and Z/γ^*

Challenges

- Detector performance: resolution, tracking, vertexing, timing, angular
- Flavor tagging for Higgs couplings
- Jet reconstruction algorithms (inclusive vs. exclusive)

Overview of Higgs analyses

Broad Higgs analysis programme envisaged in the FCC-ee Higgs group

e-group: FCC-PED-PhysicsGroup-Higgs@cern.ch

Intrinsic properties

- Mass

- Decay-mode independent cross section
- <mark>Width</mark>
- <mark>Invisible</mark>

Self coupling

Higgs couplings

- Vector boson couplings, WW, ZZ
- Fermions
- Electron Yukawa coupling

Exotics

- Exotic/rare Higgs decays (γγ, μμ, γΖ), flavor
- Light scalar Higgs searches (@ Z pole)

Global fits in κ-3 framework (arXiv:1905.03764)

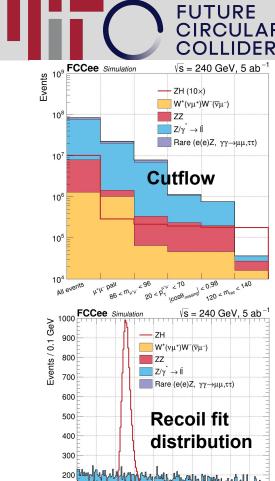
Expected relative uncertainties on Higgs couplings

Ch.	HL-LHC	+ 240 GeV	+ 240+365 GeV	+ FCC-hh
κ _w	0.99	0.88	0.41	0.19
κ _z	0.99	0.20	0.17	0.16
κ _g	2.00	1.20	0.90	0.5
κ _γ	1.60	1.3	1.3	0.31
κ _{zγ}	10.0	10.0	10.0	0.7
κ _c	-	1.50	1.30	0.96
κ _t	3.20	3.10	3.10	0.96
κ _b	2.50	1.00	0.64	0.48
κ _μ	4.40	4.00	3.90	0.43
κ _τ	1.60	0.94	0.66	0.46
lnv.	1.9	0.22	0.19	0.024

Analysis ongoing

Analysis not covered

Cross-section and mass: overview


- \rightarrow Precise Higgs mass measurement up to ~ O(MeV)
- \rightarrow Model-independent cross-section, sensitive to H \rightarrow invisible, new physics

Analysis workflow based on recoil method using $Z(\mu\mu)$ final state

- Baseline selection, at least 2 muons in the event
 - In case of more than 2 muons in event, select pair closest to Z mass
 - Tight selection of Z mass between [86, 96] GeV
- Background reduction by cut on Z p_T [20, 70] GeV and $|\cos(\theta_{miss})| < 0.98$
 - The latter suppress Z/γ*, to be replaced by MVA with inputs on muon kinematics only (to preserve decay independency)
 - Already encouraging results

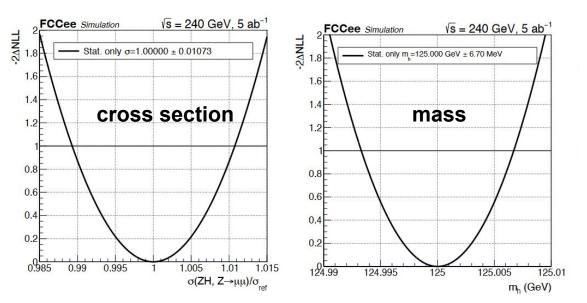
Potential improvements:

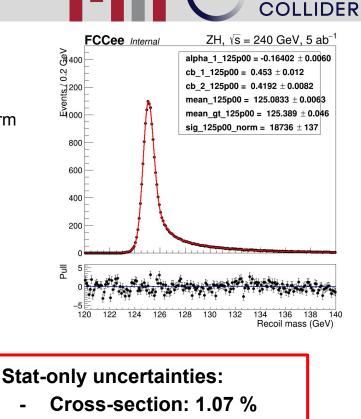
- Inclusion of Z(ee), but larger eeZ backgrounds; Z(qq) worse resolution
- Optimize selection for background rejection of mass measurement by abandoning the model-dependent constraint

126 128 130

132

100


m_{rec} (GeV)


Cross-section and mass: stat.only

Parametric fit based on recoil mass distribution

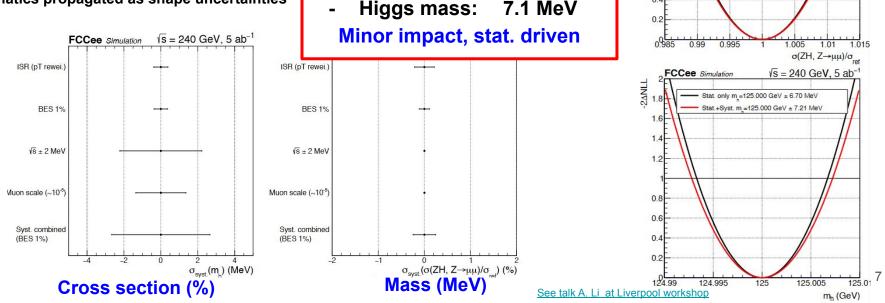
- Fit function: double-sided Crystal-ball + Gaussian core
- Free parameter: Higgs mass, signal normalization and background norm

Likelihood scans to extract uncertainties on cross section and mass

- Higgs mass: 6.7 MeV

FUTURE

LAR


Cross-section and mass: systematics

Potential systematic uncertainties studied and propagated to the fit

- Beam Energy Spread (BES) ~ 1% at 240 GeV, constrained using $ee \rightarrow ff(\gamma)$
- Initial State Radiation (ISR) estimated using KKMC by reweighting Whizard p_{τ} spectrum
- Muon momentum scale ~ 1e-5
- Center-of-mass

~ 2 MeV

Systematics propagated as shape uncertainties

Stat + syst uncertainties:

Cross-section: 1.11 %

FUTURE

√s = 240 GeV. 5 ab⁻¹

Stat. only $\sigma = 1.00000 \pm 0.01072$

Stat.+Syst. o=1.00000 ± 0.01100

FCCee Simulation

1.8

1.6

1.4

1.2

0.8

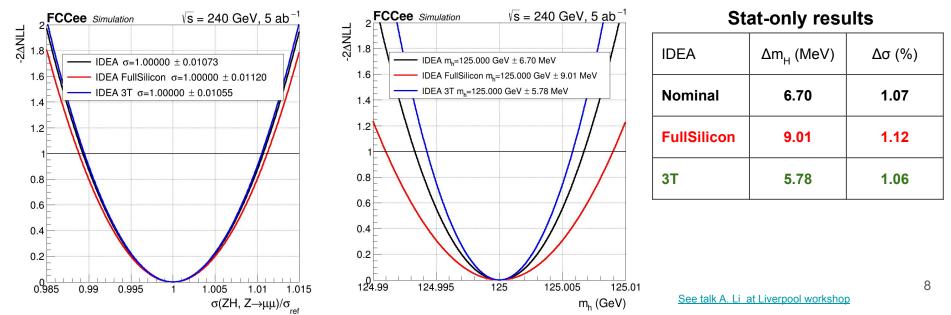
0.6

0.4

COLLIDER

_AR

Cross-section and mass: detector configs


Different IDEA detector configurations studied:

- Magnetic field increased from 2T to 3T \rightarrow expected better momentum resolution
- FullSilicon tracker instead of drift chamber → degraded resolution due to enhanced multiple scattering, especially at low p_T and in the range relevant for this analysis

FUTURE

CIRCULAR COLLIDER

Effect on mass scales with resolution, impact on cross-section uncertainty limited

Higgs to hadron couplings

High precision Higgs couplings to hadrons at FCC-ee

- Bottom and charm
- Gluons
- Probe strange coupling? ~ O(100 events)

L	h	FUTURE CIRCULAR COLLIDER

Channel	# events at ZH	Projected unc. (%)	
Bottom	40k	~ 1	
Charm	2k	~ 5	
Gluon	7k	~ 6	

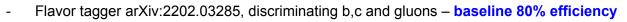
Analysis channel strategies:

(scaled to Z(II))

- Z(II)H(qq) clean channel by tagging precisely the Z, recoil method (see next slides)
- Z(inv)H(qq) resolution
- Z(qq)H(qq) multi-jet environment, hadronic separation, jet algorithms (analysis not covered yet)

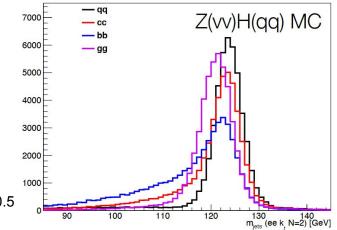
For all mentioned above, flavor tagging and jet algorithm performance important

- Detector requirements (tracking, vertexing, timing)
- See dedicated talk "Towards Higgs couplings and H->inv" by M. Selvaggi later today


Higgs to hadrons Z(II)H(qq)

Hadronic couplings extracted from Z(II)H(hadrons) final states

- Using recoil method, for Z muon or electron decays
- Categorization based on tagged b and c jets + gluon jets
- Processes split in bb, cc, gg, and non-hadronic (remainings)


Strategy:

- Jet algorithm: ee anti-kT with E recombination scheme require max 2 jets
- Jet flavor labelling based on matching to highest energy true parton in cone of DR < 0.5
- Jet flavor tagging: apply tagger WPs for the labelled jets

Strategy	b-tag ɛ _{b,} ɛ _c , ɛ _l , ɛ _g	c-tag ୧ _{b,} ୧ _c , ୧ _l , ୧ _g	g-tag ɛ _{b,} ɛ _c , ɛ _l , ɛ _g
Nominal	80 / 0.4 / 0.05 / 0.7	2.0 / 80 / 0.9 / 2.5	2.0 / 5.0 / 15 / 80
Fake rates x2	80 / 0.8 / 0.1 / 1.4	4.0 / 80 / 1.8 / 5.0	4.0 / 10 / 30 / 80
Fake rates x5	80 / 2.0 / 0.25 / 3.5	10 / 80 / 4.5 / 12.5	10 / 25 / 75 / 80
Eff -10%	70 / 0.4 / 0.05 / 0.7	2.0 / 70 / 0.9 / 2.5	2.0 / 5.0 / 15 / 70
Eff -20%	60 / 0.4 / 0.05 / 0.7	2.0 / 60 / 0.9 / 2.5	2.0 / 5.0 / 15 / 60
WPc 90%	80 / 0.4 / 0.05 / 0.7	4.0 / 90 / 7.0 / 7.0	2.0 / 5.0 / 15 / 80
WPc 70%	80 / 0.4 / 0.05 / 0.7	0.9 / 70 / 0.2 / 1.0	2.0 / 5.0 / 15 / 80

Effect on tagging WP, see talk M. Selvaggi

Higgs to hadrons Z(II)H(qq)

Event categorization based on combinatorics of the tagged jets

Fit recoil mass simultaneously in all categories

- Fit different true processes (bb, cc, gg, non-hadronic);
- Signal model Crystal-Ball
- Background modelling; polynomial
- Extract simultaneously the branching ratios

Fix the non-hadronic BR according to SM

- Assume this will be measured in precisely in other analyses, or combined fit (some constraining power in 0-jet)

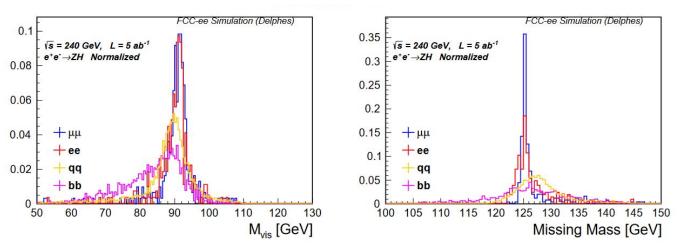
Stat-only uncertainties:

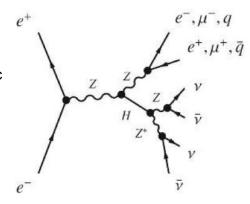
- bb ~ 1 %
- cc ~ 6.5 %
- gg ~ 3.0%

Improvements possible:

- Selection for background/non-hadr reduction (esp. cc)
- Choice of tagger, mistag, ...
- Simplify categorization using MVA

S/√S+B	ZH(bb)	ZH(cc)	ZH(gg)	ZH(non hadr.)
2b	100	0	0	0
2c	0	15	0	2
1b1c	13	0	0	1
1b	69	0	0	1
1c	1	6	3	24
2g	0	0	34	1
1g	1	0	11	8
0 jets	5	0	1	16




Higgs to Invisible

FUTURE CIRCULAR COLLIDER

Exploit various decay modes of the Z to extract the invisible decay mode

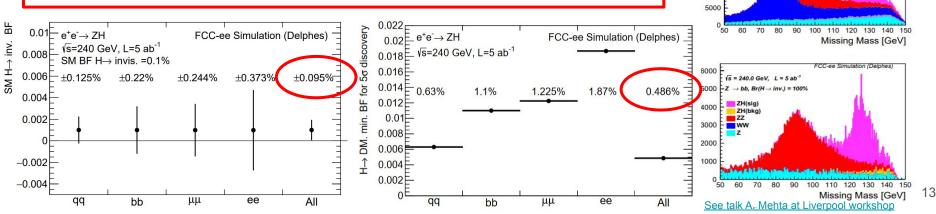
- Tag the Z using muon, electron and hadron final states (qq and bb)
- Tight cut on Z peak [87, 96] GeV, based on leptonic system or sum of all visible particles for hadronic
- Calculate missing mass m_{miss} as 240 GeV minus visible mass m_{vis}
- Additional requirements for bb channel, to cope with worse resolution of bb system
 - Relax Z peak constraint by [60, 100]
 - Scale visible 4–vector by $91/m_{vis}$ and recalculate m_{miss} to optimize resolution

Jet algorithm:

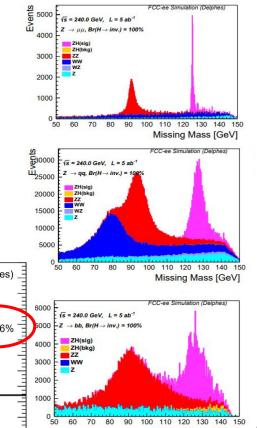
- Inclusive valencia
- DR = 0.5
- E ordering/scheme

bb system worse resolution due to semileptonic decays

12


Higgs to Invisible

Fitting strategy and categorization

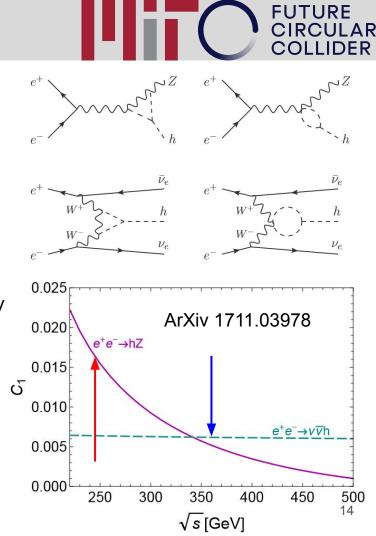

- Categorization based on 2mu, 2el and hadronic
- Hadronic channel split in jet multiplicity: < 3, =3, >3 jets, useful to constrain
 WW background
- Fit based on missing mass variable m_{miss}

Stat-only uncertainty: H \rightarrow inv ~ 0.1 %

Discovery potential H \rightarrow X above SM background with BR ~ 0.5 %

Higgs self coupling

Probe *indirectly* trilinear Higgs self coupling λ_3 through single Higgs boson cross section


NLO from SM parameterized according to:

$$\Sigma_{\rm NLO} = Z_H \Sigma_{\rm LO} (1 + \kappa_{\lambda} C_1) \qquad \qquad \kappa_{\lambda} \equiv \frac{\lambda_3}{\lambda_3^{\rm SM}}$$

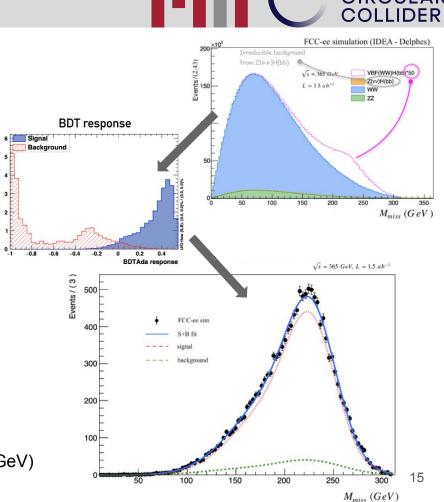
1

The total (NLO) cross can be measured O(1 %) at FCCee

- Therefore possible probing NLO deviations from SM: $\delta \kappa_{\lambda} = \kappa_{\lambda} 1$)
- Parameter C_1 sensitive to \sqrt{s} : exploit different sensitivities at 240 GeV and 365 GeV, including VBF channels:
 - ZH @ 240 GeV
 - VBF @ 365 GeV

Higgs self coupling: selection

240 GeV: ZH recoil method using Z(mumu), Z(ee), Z(bb)


- Muon final state ~ identical to mass/cross section analysis
- Electron final state suffers from larger backgrounds (eeZ)
- Added Z(bb)H final state to profit from large statistics
 - Adaptive BDT for efficient background rejection

NP (N/

- Fit on recoil mass distribution

365 GeV: VBF analysis:

- WW fusion (vvH) ~ 50k H
 - 2 b-jets, H_T > 10 GeV, MET > 10 GeV
- ZZ fusion (eeH) ~ 4k H
 - 2 electrons + 2 jets, mee > 80 GeV
- Use BDT for background rejection
- Fit on missing mass variable (peaks around 365–125=240 GeV)

FUTURE


Higgs self coupling

Fit all analyses with $\delta \kappa_{\!_\lambda}$ as POI

- Clearly adding 365 GeVenergy point resolves degeneracy
- Additional VBF channels yield large improvement

Analysis improvements:

- Improve statistics by adding hadronic Z(qq) channel
- Angular separation of Z(vv)H and VBF vvH interference

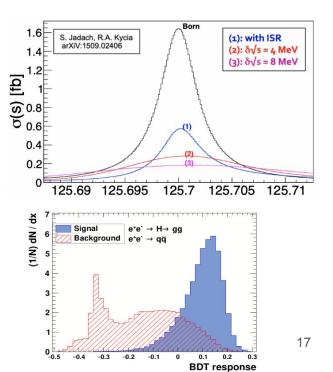
FUTURE

COLLIDER

_AR

Higgs width and electron-Yukawa

Higgs Width: measuring inclusive ZH and $H \rightarrow ZZ$ at FCC-ee @ 240 GeV


$$\frac{\sigma(e^+e^- \to ZH)}{\mathrm{BR}(H \to ZZ^*)} = \frac{\sigma(e^+e^- \to ZH)}{\Gamma(H \to ZZ^*)/\Gamma_H} \simeq \left[\frac{\sigma(e^+e^- \to ZH)}{\Gamma(H \to ZZ^*)}\right]_{\mathrm{SM}} \times \Gamma_H$$

Probe electron-Yukawa coupling:

- Direct measurement with coupling too small to be measured
- Using s-channel and beam monochromotization @ \sqrt{s} = 125 GeV
 - ISR+FSR \rightarrow 40 % reduction δE = 4.2 MeV = $\Gamma_{H} \rightarrow$ 45 % reduction
 - Total convoluted cross section ~ 280 ab⁻¹: large lumi needed
 - With ~ 20 ab⁻¹/y @ \sqrt{s} = 125 GeV \rightarrow ~ 6k eeH bosons /y
- Cope with large backgrounds, $H \rightarrow gg$ most significant
 - Efficient reduction using BDT (bkg reduction 17x, sig 2x)
 - Significance at 10 ab⁻¹ = 1.1 \rightarrow limit y_e < 2.5 x y_e(SM) (95% CL)

Stat-only uncertainties ~ 1.1 % Improvement using VBF channels and/or H \rightarrow WW + e.g. H \rightarrow bb Contributions welcome!

Summary and outlook

Presented overview of ongoing Higgs analyses at FCC-ee

Assess Higgs precision measurements with actual analysis techniques (generation \rightarrow analysis \rightarrow fit)

- Detector performance and optimization
- Studying jet tagging, flavor, jet reconstruction algorithms
- Study of systematic uncertainties

Open analyses still to be covered for experimental assessment

 \rightarrow Contact the Higgs conveners in case of interest!

Next appointments

- Aim for regular/monthly performance meeting
- Programme + Performance meeting beginning of July (date TBD)
- Mini-workshop planned after ECFA workshop in November (TBD)

FUTURE CIRCULAR COLLIDER

FCC-ee Higgs conveners Performance

Michele Selvaggi, Jan Eysermans

Programme

Gauthier Durieux, Christophe Grojean, Jorge De Blas Mateo

FCC-PED-PhysicsGroup-Higgs@cern.ch