Outline

Motivation

What we had before

What have now Q;:%Q
One example '

Planned enhancements

Outlook

Improving FCCAnalyses

FCC Week 2022, Paris

May 31, 2022
C. Helsens
KIT

Motivation (ED)

Analysis framework are in constant evolution and always need to follow state of the art
solutions and suggestions from user community to improve/facilitate the usage

In the process of re-writing the batch interface, we realised that a lot of improvements
could be obtained

Decided to proceed with changing the processing logic and this triggered a lot of new ideas
for developments that are explained in this talk

User feedback on the new developments and the one planned is still very valuable

o Post your questions / request on the FCC Forum under FCCAnalyses category
https://fccsw-forum.web.cern.ch/ or using github issues, pull requests
https://github.com/HEP-FCC/FCCAnalyses/

C. Helsens, Improving FCCAnalyses, FCC week 2022 2

https://fccsw-forum.web.cern.ch/
https://github.com/HEP-FCC/FCCAnalyses/

What is FCCAnalyses

FCCAnalyses is a common analysis framework for FCC related analyses

It is based on Root DataFrames

It is composed of python wrappers for ease of use

(@)

(©)

(@)

(@)

(@)

(@)

connection with database of common samples of events
utilities for batch processing

Full analysis cycle: pre-selection, final selection, histograms, final TTrees and plotting
Can read EDM4Hep format
Operations on the events are done

Directly using inline definitions: Define(“pt_100","pt[pt>100]")
Defining inline C++: .Define(“xx”, [&x] {return x*x;})

Writing your own C++ functions and add them to the FCCAnalyses dictionnary of analysers

aunn

of provide them through ROOT.gInterpreter.Declare(“””....some code...

C. Helsens, Improving FCCAnalyses, FCC week 2022

nnn»)

What we had before

Each analysis is hosted in a single directory, for example examples/FCCee/higgs/mH-recoil/mumu/ and
contains the same kind of files, please use the same naming convention for all analysis.

1. analysis.py : This class that is used to define the list of analysers and filters to run on as well as the
output variables.

2. preSel.py : This configuration file is used to define how to run the analysis.py . It contains the list of
samples, the number of CPUs, the fraction of the original sample to process and the base directory for
the yaml files (that contains the informations about the samples). This will run the analysis.py with a
common code config/runDataFrame.py (this last file is common to all analyses and should not be
touched).

e The analysis.py file contained a lot of analysis specific code to run over single file, write
outputs, import various modules etc...

e Configuration was done in the preSel.py user script

® This was bringing a lot of code duplication, thus error prone -> simplifications needed!!

C. Helsens, Improving FCCAnalyses, FCC week 2022

Wh at we h a d befo Fre Not showing the details for other running modes

Each analysis is hosted in a single directory, for example examples/FCCee/higgs/mH-recoil/mumu/ and
contains the same kind of files, please use the same naming convention for all analysis.

1. analysis.py : This class that is used to define the list of analysers and filters to run on as well as the
output variables.

2. preSel.py : This configuration file is used to define how to run the analysis.py . It contains the list of
samples, the number of CPUs, the fraction of the original sample to process and the base directory for
the yaml files (that contains the informations about the samples). This will run the analysis.py with a
common code config/runDataFrame.py (this last file is common to all analyses and should not be
touched).

python examples/FCCee/higgs/mH-recoil/mumu/preSel.py
python examples/FCCee/higgs/mH-recoil/mumu/finalSel.py
python config/doPlots.py examples/FCCee/higgs/mH-recoil/mumu/plots.py

C. Helsens, Improving FCCAnalyses, FCC week 2022

What we have now - 1

Analyses in the FCCAnalyses framework usually follow standardized workflow, which consists of multiple files
inside a single directory. Individual files denote steps in the analysis and have the following meaning:

1.

analysis.py or analysis_stage<num> : In this file(s) the class of type RDFanalysis is used to define the
list of analysers and filters to run on (analysers function) as well as the output variables (output
function). It also contains the configuration parameters processList , prodTag, outputDir, inputDir,
nCPUS and runBatch . User can define multiple stages of analysis.py . The first stage will most likely
run on centrally produced EDM4hep events, thus the usage of prodTag . When running a second analysis
stage, user points to the directory where the samples are located using inputDir .

e The analysis.py and preSel.py files have been merged, and code duplication removed
e Configuration is now done in analysis.py that should follow some simple nomenclature
e To run over the samples defined inside analysis_ stage<num>.py

fccanalysis run examples/FCCee/higgs/mH-recoil/mumu/analysis_stagel.py

What we have now - 1

Analyses in the FCCAnalyses framework usually follow standardized workflow, which consists of multiple files
inside a single directory. Individual files denote steps in the analysis and have the following meaning:

1. analysis.py or analysis_stage<num> : In this file(s) the class of type RDFanalysis is used to define the
list of analysers and filters to run on (analysers function) as well as the output variables (output
function). It also contains the configuration parameters processList , prodTag, outputDir, inputDir,

nCPUS and runBatch . User can define multiple stages of analysis.py . The first stage will most likely
run on centrally produced EDM4hep events, thus the usage of prodTag . When running a second analysis
stage, user points to the directory where the samples are located using inputDir .

e The analysis.py and preSel.py files have been merged, and code duplication removed
e Configuration is now done in analysis.py that should follow some simple nomenclature

e To run over files without using the processList
fccanalysis run examples/FCCee/higgs/mH-recoil/mumu/analysis_stagel.py \
——output <myoutput.root> \
—files-1list <file.root or filel.root file2.root or filex.root>

Inside analysis_stage1.py (EDM4Hep) - 1

O 00 N O U A W N =

L o O T O
O U s WN RS

Configuration part of the analysis_ stage1.py

#Mandatory: List of processes

processList = {
'p8_ee_ZZ_ecm240':{},#Run the full statistics in one output file named <outputDir>/p8_ee_ZZ_ecm240.root
'p8_ee_WW_ecm240':{'fraction':0.5, 'chunks':2}, #Run 50% of the statistics in two files named <outputDir>/p8_ee_WW_ecm240/chunk<N>.root
'p8_ee_ZH_ecm240':{'fraction':0.2, 'output':'p8_ee_ZH_ecm240_out'} #Run 20% of the statistics in one file named <outputDir>/p8_ee_ZH_ecm240_out.root

#Mandatory: Production tag when running over EDM4Hep centrally produced events, this points to the yaml files for getting sample statistics
prodTag = "FCCee/spring2021/IDEA/"

#0ptional: output directory, default is local dir
outputDir = "ZH_mumu_recoil/stagel"

#0ptional: ncpus, default is 4
nCPUS =8

Inside analysis_stage1.py (EDM4Hep) - 2

26 #Mandatory: RDFanalysis class where the use defines the operations on the TTree
27 class RDFanalysis():

28

29 #,

30 #Mandatory: analysers funtion to define the analysers to process, please make sure you return the last dataframe, in this example it is df2

31 def analysers(df):

32 df2 = (65 #

33 df 66 #Mandatory: output function, please make sure you return the branchlist as a python list
34 # define an alias for muon index collection 67 def output():

35 .Alias("Muon@", "Muon#@.index") 68 branchList = [

36 # define the muon collection 69 “selected_muons_pt"

37 .Define("muons", "ReconstructedParticle::get(Muon@, ReconstructedParticles)") " . gt .
38 #select muons on pT 70 selected_muons_y",

39 .Define("selected_muons", "ReconstructedParticle::sel_pt(10.)(muons)") 1 "'selected_muons_p",
49 # create branch with muon transverse momentum 72 "selected_muons_e",

41 .Define("selected_muons_pt", "ReconstructedParticle::get_pt(selected_muons)") 73 "'zed_leptonic_pt",

42 # create branch with muon rapidity 74 "zed_leptonic_m",

43 .Define("selected_muons_y", “ReconstructedParticle::get_y(selected_muons)") 75 "zed_leptonic_charge",
44 # create branch with muon total momentum 76 “zed_leptonic_recoil_m"
45 .Define("selected_muons_p", "ReconstructedParticle: :get_p(selected_muons)") 77]

46 # create branch with muon energy P

47 .Define("selected_muons_e", "ReconstructedParticle: :get_e(selected_muons)") 78 FECURMRORANEhLLSE

48 # find zed candidates from di-muon resonances

49 .Define("zed_leptonic", "ReconstructedParticle::resonanceBuilder(91) (selected_muons)")

50 # create branch with zed mass

51 .Define("zed_leptonic_m", "ReconstructedParticle: :get_mass(zed_leptonic)")

52 # create branch with zed transverse momenta

53 .Define("zed_leptonic_pt", "ReconstructedParticle: :get_pt(zed_leptonic)")

54 # calculate recoil of zed_leptonic

55 .Define("zed_leptonic_recoil”, "ReconstructedParticle::recoilBuilder(240)(zed_leptonic)")

56 # create branch with recoil mass

57 .Define("zed_leptonic_recoil_m","ReconstructedParticle::get_mass(zed_leptonic_recoil)")

58 # create branch with leptonic charge

59 .Define("zed_leptonic_charge","ReconstructedParticle::get_charge(zed_leptonic)")

60 # Filter at least one candidate

61 .Filter("zed_leptonic_recoil_m.size()>0")

62)

63 return df2 9

Inside analysis stage2.py (custom files) - 1

processList = {

'p8_ee_ZZ_ecm240':{},#Run over the full statistics from stagel input file <inputDir>/p8_ee_ZZ_ecm240.root. Keep the same output name as input
'p8_ee_WW_ecm240':{}, #Run over the statistics from stagel input files <inputDir>/p8_ee_WW_ecm240_out/*.root. Keep the same output name as input
'p8_ee_ZH_ecm240_out':{'output': 'MySample_p8_ee_ZH_ecm240'} #Run over the full statistics from stagel input file <inputDir>/p8_ee_ZH_ecm240_out.root. Change

#Mandatory: input directory when not running over centrally produced edm4hep events.

1
2
3
4
5
6
7
8 #It can still be edmdhep files produced standalone or files from a first analysis step (this is the case in this example it runs over the files produced from an
9

inputDir = "ZH_mumu_recoil/stagel"
10
11 #Optional: output directory, default is local dir
12 outputDir = "ZH_mumu_recoil/stage2"
13
14 #Optional: ncpus, default is 4
15 nCPUS =2
16
17 #Optional running on HTCondor, default is False
18 runBatch = False
19

20 #USER DEFINED CODE

21 import ROOT

22 ROOT.gInterpreter.Declare("""

23 bool myFilter(ROOT::VecOps::RVec<float> mass) {

24 for (size_t i = @; i < mass.size(); ++i) {

25 if (mass.at(i)>80. && mass.at(i)<100.)

26 return true;

27 }

28 return false;

29 }

30)

31 #END USER DEFINED CODE 10

Inside analysis_stage2.py (custom files) - 2

33 #Mandatory: RDFanalysis class where the use defines the operations on the TTree
34 class RDFanalysis():

35

36 #.

37 #Mandatory: analysers funtion to define the analysers to process, please make sure you return the last dataframe, in this example it is df2
38 def analysers(df):

39 df2 = (df

40 #Filter to have exactly one Z candidate

41 .Filter("zed_leptonic_m.size() == 1")

42 #Define Z candidate mass

43 .Define("Zcand_m","zed_leptonic_m[0]")

44 #Define Z candidate recoil mass

45 .Define("Zcand_recoil_m","zed_leptonic_recoil_m[0]")

46 #Define Z candidate pt

47 .Define("Zcand_pt","zed_leptonic_pt[0]")

48 #Define Z candidate charge

49 .Define("Zcand_q","zed_leptonic_charge[0]")

50 #Define new var rdf entry (example)

51 .Define("entry", “rdfentry_")

52 #Define a weight based on entry (inline example of possible operations)
53 .Define("weight", "return 1./(entry+1)")

54 #Define a variable based on a custom filter

55 .Define("MyFilter", "myFilter(zed_leptonic_m)")

56)

57 return df2

58

59 #.

60 #Mandatory: output function, please make sure you return the branchlist as a python list.
61 def output():

62 branchList = [

63 "Zcand_m", "Zcand_pt", "Zcand_q","MyFilter","Zcand_recoil_m",

64 "entry","weight"

65 1

66 return branchList 1
67

What we have now - 2

2. analysis_final.py : This analysis file contains the final selections and it runs over the locally produced
n-tuples from the various stages of analysis.py . It contains a link to the procDict.json such that the
samples can be properly normalised by getting centrally produced cross sections. (this might be removed
later to include everything in the yaml, closer to the sample). It also contains the list of processes
(matching the standard names), the number of CPUs, the cut list, and the variables (that will be both
written in a TTree and in the form of TH1 properly normalised to an integrated luminosity of 1pb~".

e The analysis_ final.py replace finalSel.py

e Configuration is now done in analysis_ final.py that should follow some simple
nomenclature

e To run over the samples defined inside analysis_ final.py

fccanalysis final examples/FCCee/higgs/mH-recoil/mumu/analysis_final.py

12

What we have now - 3

3. analysis_plots.py : This analysis file is used to select the final selections from running
analysis_final.py to plot. It usually contains information about how to merge processes, write some

extra text, normalise to a given integrated luminosity etc... For the moment it is possible to only plot one
signal at the time, but several backgrounds.

e The analysis_plots.py replace plots.py

Configuration is now done in analysis_ plots.py that should follow some simple
nomenclature
e To run over the samples defined inside analysis_ plots.py

fccanalysis plots examples/FCCee/higgs/mH-recoil/mumu/analysis_plots.py

13

What we have now - summary

e Developments done in the python wrapper allows a more intuitive and understandable

way of running analyses
o 1 executable: fccanalysis
© 3 running modes: run, final, plots

® Batch support running at CERN on HTCondor, should be easy to run elsewhere

Other stages

fccanalysis run examples/FCCee/higgs/mH-recoil/mumu/analysis_stagel.py < el

fccanalysis final examples/FCCee/higgs/mH-recoil/mumu/analysis_final.py

fccanalysis plots examples/FCCee/higgs/mH-recoil/mumu/analysis_plots.py

14

FCCAnalyses organisation

P

, vvolkl cmake: avoid absolute paths to source headers being baked into dictio

N |

master v~ FCCAnalyses [analyzers [dataframe /

FCCAnalyses

case-studie

src

CMakelLists.txt

cmake: avoid absolute paths to source headers being baked into dictio...
remove dd4hep from case-studies cmakelist
Making vector helper functions local to the calculate_thrust

e: avoid absolute paths to source headers being baked into dictio...

(GEG=2D)’

Go to file Add file ~

v 82a87ff 8 daysago O History

8 days ago
last month
11 days ago

8 days ago

Common dictionnary of analysers, living in
namespaces FCCAnalyses::<analysersname>

Example to add case study code to simplify
the workflow (still under tests/evaluation)

C. Helsens, Improving FCCAnalyses, FCC week 2022

15

FCCAnalyses organisation

List of python configuration files that can be
used to fully reproduce the inputs needed by
analyses

¥ master + FCCAnalyses [examples [FCCee [higgs / mH-recoil / mumu /

. kjvbrt Automatic macrobenchmarking (#166) ...

[analysis_final.py fix typo

[analysis_plots.py add analysis_plots.py

[analysis_stagel.py Automatic macrobenchmarking (#166)
[§ analysis_stagel_batch.py mofidy existing examples

[analysis_stage2.py Testing whole example chain

C. Helsens, Improving FCCAnalyses, FCC week 2022

(GEG=2D)’

Go to file Add file »

v e033e59 15 days ago

& History

29 days ago
29 days ago
15 days ago
29 days ago

last month

16

Planned developments

On the FCCAnalyses side

Add functionalities for batch job validation and re-submission

RDataFrame allows to connect to spark and dask, need to support this in addition of
standard batch submission

Further re-organisation of the analysers and code optimisations

Continue to add test and benchmarks

Continue to write extensive documentation and take user feedback into account
Continue to work on the vertexing with ACTS, custom LCFiplus custom
implementation, and Franco’s fitter

Consider producing a central “derivation” to allow users to run over a “simplified”

format
17

Outlook

® FCCAnalyses is the baseline framework for FCC physics studies

@)

©)

It has already been used for publication quality results
Need user feedback to improve, please don’t be shy!

e Other planned developments on the RDF side include:

©)

built-in support for handling systematic variations, with a clever "only re-run what's
strictly needed" approach

seamless switch between TTree and RNTuple inputs

deep learning model inference as part of the multi-thread RDF event loop with SOFIE

18

