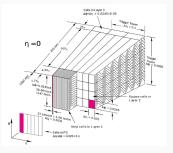


SUMMARY OF THE GRANULAR WORKSHOP

Nicolas Morange, on behalf of the FCC Noble Liquid Calorimetry group FCC Week, Paris, June 1 2022

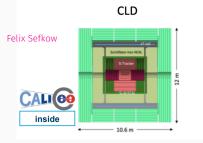
INTRODUCTION

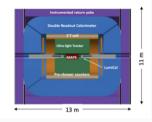

Noble Liquid Calorimeters

- Decades of success at particle physics experiments: HERA, DO, NA31, NA48, ATLAS...
- Mostly LAr, a bit of LKr
- Simple principles
- Many good properties
- Not too expensive to build

LAr calorimetry today: ATLAS experiment

- Excellent physics performance matching its specs.
 - Instrumental to Higgs boson discovery !
 - Resolution: $10\%/\sqrt{E} \oplus 0.2/E \oplus 0.7\%$
 - Linearity at per-mille level over 4 orders of magnitude
 - Stability over time at 10⁻⁴
- 14 years of successful operation
- Electronics upgrades to make it cope with HL-LHC





CONTEXT: CALORIMETERS FOR FCC-EE

IDEA

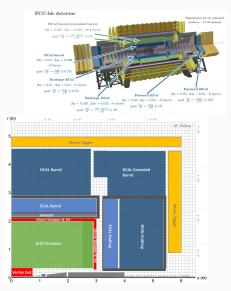
FCC-ee context

- 2-4 interaction points: several detectors / technologies needed
- Very advanced R&D on new calorimeter concepts: highly-granular (CALICE), dual-readout (DREAM)
- R&D on LAr calos stopped 25 years ago
 - Noble Liquid calos can be competitive, but R&D has to be restarted to explore new ideas

Requirements for FCC-ee

- Excellent shower shape discrimination for event classification
- Unprecedented hadronic resolution: \sim 4% at 50 GeV
- → Points toward high granularity, optimised for use in Particle Flow algorithm
- High EM resolution even at low energy for b and τ physics at the Z peak

NOBLE LIQUID CALORIMETRY FOR FCC



Initial studies for FCC-hh

- R&D initially started for ESPP studies for an FCC-hh calo
- Radiation levels at FCC-hh make Noble Liquid the only viable option

R&D then shifted to calo concept for FCC-ee

- "Simpler" FCC-ee conditions ⇒ optimization towards ultimate performance
- Small but active community: CERN, IJCLab, Charles Univ. Prague, Copenhagen
 - Funding by CERN EP R&D and AIDAInnova
- Shaping a new detector concept
 - See presentation by Martin Aleksa

THE GRANULAR WORKSHOP

https://indico.ijclab.in2p3.fr/event/7664/

First ever workshop on noble liquid R&D for FCC

- Meet together for the first time after 2 years of Zoom meetings
- Status of the ongoing R&Ds
- Experience sharing from long-term ATLAS LAr experts
- Discussion of our mid-term goals
 - Towards a detector concept
 - Towards a prototype going to testbeam

sampled at 43 MHz and digitized

Pulse Samples

Nsamples

In-depth presentations from ATLAS experts

- Covering design, construction, operation, simulation, digitization, reconstruction, calibration
- Even people with 10 years of ATLAS LAr experience (e.g me) learned a lot !

B Mansoulié

M. Delmastro

Achieving high granularity for PFlow, π^0 identification

- High granularity electrodes
- High density feedthroughs

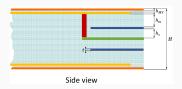
High EM energy resolution

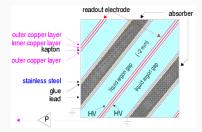
- Minimize dead material (cryostat, solenoid)
- Low noise electronics

Simulations to allow performance optimization

- Choice of absorber (Pb, W) and active material (LAr, LKr)
- Optimization of granularity

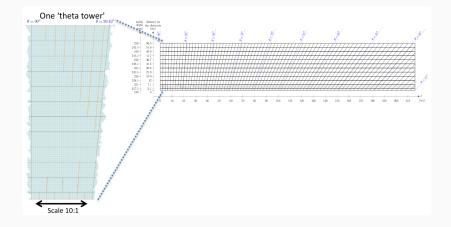
CONCEPT OF HIGH GRANULARITY ELECTRODES




Reaching $10 \times \text{ATLAS}$ granularity

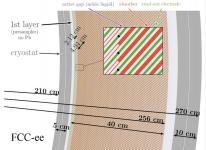
- 200000 cells \rightarrow few million cells
- Readout in ATLAS uses simple copper/kapton electrodes
- Issue: traces to route signals to front or back of electrode take space !
- For 10× more granular: go to multilayer PCB to route signals in a deep layer

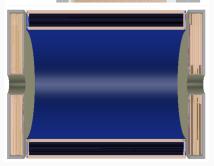
Basic design


- Multi-layer PCB cannot be bent to accordion as ATLAS Kapton electrode
- \Rightarrow Straight planes inclined around the barrel
 - Simulation in a specific IDEA-LAr setup

DETECTOR GENERAL DESIGN

General considerations

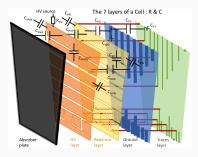

- Sampling calo: baseline with Pb absorber and LAr active material
- PCBs as readout planes: lots of possibilities
 - Projective cells along η and ϕ
 - Possibility to group electrodes into cells
 - Finer segmentation where needed, i.e 'strips' in ATLAS for π^0 rejection
 - adjust depth of each layer


Barrel

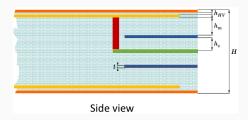
- Tilted planes around barrel: non-trivial geometry
- Gap widening at high radius
- \Rightarrow non-constant sampling fraction within a cell
- \Rightarrow mitigated by high longitudinal segmentation
 - 12 layers in baseline design

Endcaps

- Simple design: planes perpendicular to beam axis
- May be revisited for mechanical considerations



J. Faltova

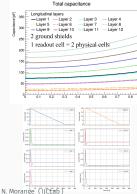

Principle

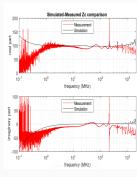
- HV layer capacitively coupled to readout layer
- Signal transferred from both sides to readout trace through a via
- Shielding traces reduce cross-talk from other segments

Calculation of cell properties

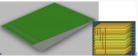
- Multi-parameter optimisation:
 - Trade-off capacitance (noise) / cross-talk ?
 - What is the maximum density of signal traces ?
- Studies ongoing with simulations and building prototypes

ELECTRODES PROTOTYPES

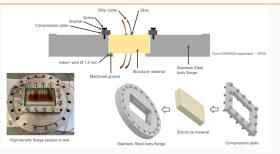



Simulations of capacitances and cross-talk

- Use Cadence/Sigrity and FEM tool ANSYS HFSS
- Cell capacitance driven by readout shield capa
- Cross-talk limited < 0.2% for long shaping times

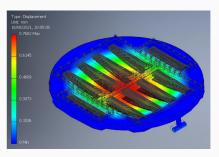

Prototypes

- First prototype "test structure" built
 - Learn subtleties of measurements
 - Validate simulation tool ⇒ good agreement for frequencies of interest
- Next prototypes designed and being fabricated
 - Varying sizes of shields, depths of layers, etc
 - Measurements of realistic cells



B. François

HIGH DENSITY FEEDTHROUGHS



- High density feedthroughs needed in case readout electronics outside of cryostat
- Aim for \sim $\times 5$ density and \sim $\times 2$ area wrt ATLAS

Ongoing CERN R&D

- Prototypes of 3D-printed epoxy resins structures with slits for strip cables, glued to the flange
- Leak tests and pressure tests at 300 K and 77 K
 - Suitable materials identified
- Stress / deformation simulations of complete designs at 300 K and 77 K

N. Morange (IJCLab)

M. Barba

300 K

THIN CRYOSTAT

Minimizing dead material in front of calo

- Crucial for low energy measurements at FCCee
- Ongoing R&D for cryostats using new materials and sandwiches
 - Generic R&D at CERN as cryos will be used for solenoids in all experiments
 - Synergy with progress in aerospace
 - Test microcack resistance, sealing methods, leak and pressure tests
 - Address CFRP/Metal interfaces
- Promises for 'transparent' cryostats: few % of X₀ !

Criteria: Safety Factor = 2	Hone ycomb Al			Solid shell				
	HM CFRP		AI		HM CFRP		AI	
	OWC	icc	OWC	ICC	OWC	ICC	OWC	ICC
Material budget X/X6	0.03	0.043	0.094	0.17	0.092	0.12	0.34	0.44
X ₀ % savings	-68%	-75%	REF	REF	-2%	-29%	262%	159%
	_							
Skin Th. [mm]	3.2	4.8	3.9	7.5				
Core Th. [mm]	32	38	40	40				
Total Th. [mm]	38.4	47.6	47.8	55	24	30.4	30	39
Thickness % savings	-20%	-13%	REF	REF	-50%	-45%	-37%	-29%

NASA's lineless cryotank

Sealing with Belleville washers

5. MUL

READOUT ELECTRONICS: ACHIEVING VERY LOW NOISE

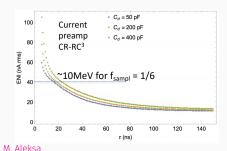
Goals of low noise

- Good resolution even for \sim 300 MeV photons
- Measure MIPs deposits

Master formula

- Dominant noise term goes as $C\sqrt{4kT/(g_m\tau_p)}$
- Where C depends on cell capacitance and on the transmission line
- au_p can be much larger than in ATLAS: 50 o 200 ns

Cold electronics ?


- Gain on g_m, T and C (short transmission line) !
 - Noise requirements easily achieved
- No radiation hardness issue at FCCee, could simplify feedthrough design
- Challenges are heat dissipation and difficulty of repairs

Warm electronics ?

- A la ATLAS, with longer shaping
- Low enough noise level seems achievable (S/N > 3 for MIPs)

$C_{cable} = \frac{\tau_{delay}}{Z_c}$	ENC (keV)	Peaking time = 500 ns		
Z _c Warm electronics L = 5 m C _{ebbe} = 500 pF / 1 nF electronics L=10 cm C _{ebbe} = 10 pF / 20 pF	Cd = 100pF - 50/25 Ω	1400 / 2500		
	Cd = 200pF - 50/25 Ω	1600 / 2800		
	Cd = 400pF - 50/25 Ω	2100 / 3200		
	Cd = 800pF - 50/25 Ω	2900 / 4100		
	Cd = 100pF - 50/25 Ω	140 / 150		
	Cd = 200pF - 50/25 Ω	250 / 260		
	Cd = 400pF - 50/25 Ω	470 / 470		
	Cd = 800pF - 50/25 Ω	910 / 910		

R. Chiche

TOWARDS A FIRST CALORIMETER PROTOTYPE

Goal: $\sim 40 \times 40 \text{cm}$ proto in a few years

Only testbeam will tell if the concept will work

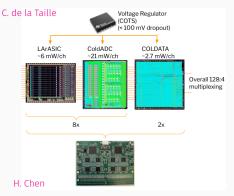
Mechanics

- Work on absorbers to start in Autumn
- Spacers: ideas for 3D-printing

Readout electronics

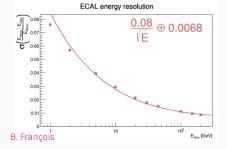
- Requirements not too far from other projects
- SKIROC chip for CALICE good candidate
 - Does not work at cryo temperatures
 - Energy consumption too high
 - Can be used for warm electronics
- DUNE readout electronics
 - Dynamic range not large enough
 - Sufficient for cold electronics in a first prototype

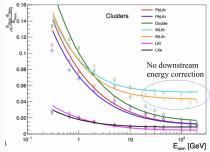
Cryostat


• Possible synergy with first carbon fiber prototype from CERN

16/19

- Autotrigger @ ½ MIP = 2 fC
 Charge measurement 15 bit
- in two gains
- 16-deep Analog memory
 Low power 25µW/Ch with
- power pulsing
 Embedded readout (see SPIROC)
 SiGe 350 nm produced in
- SiGe 350 nm, produced 2010


Geometry implemented in FCC SW

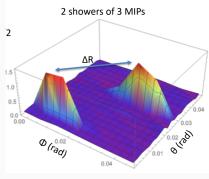

- 12 layers, 22 X⁰
- 2x1.2 mm LAr, 2mm Pb/Steel, 1.2mm PCB, inclined by 50°
- Typical cell size: 2x2x3 cm³
- Reconstruction and simple cluster corrections enable first performance studies
 - See presentation from Valentin Volkl

Optimizing the design

- Important design options: Pb vs W, LAr vs LKr
- Photon energy resolution: baseline design gives $8\%/\sqrt{E}$
- Preliminary comparisons performed N. Morange (IJCLab)

M. Waterlaat

SIMULATION AND PERFORMANCE II



Optimizing the granularity

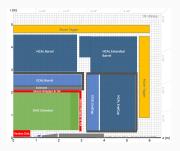
- Use of PCB gives large flexibility
- First studies focusing on π^0 identification efficiency and classification of au decay modes
 - Also points towards using LKr to benefit from smaller R_M (4cm with LAr)

Next step: move to jet physics

- Jet energy resolution of $\sim 4\%$ at 45 GeV requirement for Higgs physics
- Pandora PFA integration in FCC SW in progress
 - J. Smiesko
- Assuming some HCAL, will allow to perform end-to-end detector optimization
- Calo concept also well suited for new clustering techniques (e.g CLUE), ML approaches

Μ	Alaksa					
	$Recon \to$					
	Gen ↓	$\pi^{\pm} \nu$	$\pi^{\pm}\pi^0\nu$	$\pi^{\pm} 2\pi^{0} \nu$	$\pi^{\pm} 3\pi^{0} \nu$	$\pi^{\pm} 4\pi^{0} \nu$
	$\pi^{\pm} \nu$	0.9560	0.0425	0.0010	0.0003	0.0002
	$\pi^{\pm} \pi^0 \nu$	0.0374	0.9020	0.0586	0.0016	0.0002
	$\pi^{\pm} 2\pi^{0}\nu$	0.0090	0.1277	0.7802	0.0808	0.0022
	$\pi^{\pm} 3\pi^{0}\nu$	0.0036	0.0372	0.2679	0.5972	0.0910

K. Wandall-Christensen



A very productive GranuLAr workshop

- Covering all aspects of the project
- Very lively discussion after each talk
- Gaining evidence that high-granularity LAr could be a very versatile solution, fulfilling stringent FCC-ee requirements
 - Good progress on high granularity PCBs
 - Successful R&D on high-density feedthroughs
 - Clear synergy with "transparent" cryostats
 - First simulations show great performance can be achieved

Way forward

- First steps towards a detector concept
- Milestone: build a small prototype within a few years
 - Lots of technical challenges still ahead, plenty of room for new collaborators !
 - Only testbeam will prove the feasibility of the concept

