

Software for PED studies: the road ahead

FCC Week 2022 Campus des Cordeliers, Sorbonne University, Paris, France May 30, 2022 <u>G Ganis</u>, CERN-EP C Helsens, KIT

S&C relation with other groups

Typical workflows to support

Software Infrastructure (Build/Test/Deploy)

Workload and Data Management

FCC S&C approach

Driving considerations

- One software to support all case (hh, ee, eh)
 - Modular structure to allow for evolution

Adopted strategy

- Adapt existing solutions form LHC
 - Look at ongoing R&D projects (AIDA, ...)

Priorities differ from those of LHC

- Privilege low-barrier of entry, agile support for detector concept evolution
 - Correctness, easy-of-use, commonality, interoperability
- LHC Infrastructure, lessons-learned, best practices are nonetheless very important

FCC S&C challenges

Software:

- Get the functionality right while remaining modular and agile
- In particular
 - Parametrized simulation with output format equivalent to full simulation
 - Allows to design/develop algorithms ready for the full simulation
 - Sub-detector Plug&Play mechanism: easy switch of detector concepts/solutions
 - E.g. test drift chamber based tracking w/ LAr calorimeter and/or dual readout

Computing:

- Full simulation of all cases is unrealistic
 - Precise determination of size/content of the samples required for a realistic estimation of physics potential of a given detector solution
- Interplay full/fast/parametrized simulation crucial
 - Synergy with Physics Performance and Detector Concepts working groups is essential

Key4hep, the common software vision

Create a software ecosystem integrating in optimal way various software components to provide a ready-to-use full-fledged data processing solution for HEP experiments

Complete set of tools

- Generation, simulation, reconstruction, analysis
- Build, package, test, deploy, run

Common Core ingredients

- PoDIO for EDM4hep, based on LCIO and FCC-edm
- Gaudi framework, devel/used for (HL-)LHC
- DD4hep for geometry, adopted at LHC
- Spack package manager, lot of interest from LHC

Community project

- Unifying communities, synergetic enterprise
- Contributions from CLIC, ILC, FCC, CEPC and EIC

Full support by ECFA, AIDA, CERN EP R&D

Kick-off meetings <u>Bologna</u> (6/2019), <u>Hong Kong</u> (1/2020) <u>Weekly working meetings</u> Deliverables already used in large scale production

FCC S&C mandate reviewed for 2021-2025

Inter-community Task Force (LHC, LC, FCC-PED)

Get best experience, spread knowledge, raise interest

Two-fold target

- Review status of the software ecosystem
 - Current approach based on key4hep is a solid base for FSR and beyond
 - Recommendations: identify missing parts, foster synergy with Physics Performance and Detector Concepts, Facilitate software distribution and availability, ensure extensive and updated documentation
 - Foster training, user forum discussions, engage in the community (e.g. ECFA, HSF, ...)
- Establish computing resource requirements for FSR (and beyond)
 - Scale driven by Z-pole running, needs similar to full HL-LHC
 - Multiple ways event reconstruction and MC simulation will be required to address systematics
 - Recommendations: build on existing analyses of computational needs, using LHC facilities as reference
 - Establish timeline for gathering/updating inputs from detectors/analysis experts to assess resources requirements and anticipate sources of uncertainty

FCC S&C suggested structure

FCC S&C Feasibility Study Lead **FCC S&C Coordinators** FCC S&C Coordinators Core SW Coordinator Generator Liaison Simulation, Digitization, MC Production Coord Reconstruction Coord / key4hep liaison Dirac Liaison K4. E4 DC, E4 **FCCSW Release** MDI Interface Coordinator Geometry Coordinator and Resource Coordinator **MDI** Liaison DD4Hep Liaison Coordinator K4 DC MDI **Documentation Coordinator Training Coordinator FCC Analysis Coordinator** FCC S&C Coordinators FCC S&C Coordinators PP. E4 Physics Performance Core software group at CERN DC **Detector Concepts** External contributions warmly encouraged MDI Machine Detector Interface Connection with other PED groups K4 Key4hep E4 EDM4hep

FCC S&C: where we are

Current workflows

- Parametrized simulation
 - Delphes based studies
 - Improved tracking: realistic output allows to design/develop advanced algorithms
- Analysis
 - Developed a framework based on latest ROOT technology being pushed for HL-LHC
 - Fully based on EDM4hep (Key4hep)
- Full simulation
 - Workflow being consolidated together w/ Physics Performance/Detector Concepts WGs
 - Extensive experience from Linear Collider community very important

Computing

- Home based solution for MC productions
 - Mostly based on CERN in-kind resources

FCC S&C Next Priorities

Software

- Simulation
 - Streamline/automatize sub-detector Plug&Play technology
 - Synergy w/ Detector Concepts, dedicated CERN fellow from 9/2022
- Reconstruction
 - Consolidate use of algorithms developed in Linear Collider studies
 - Foster/validate integration in Key4hep of Pandora and ACTS
 - Gateways to state-of-the-art Particle Flow Algorithms and tracking, respectively
- Analysis
 - Consolidate current framework, define reduced format for simplified collection navigation (LHC)
 - Provide solid visualisation (Event Display) tool

C Helsens Tue, 16h00

Computing

Bring FCC@(iLC)Dirac form technology preview to production

V Volkl, Tue, 16h18

Take away messages

- S&C plays a crucial role in PED studies
 - Needs to adequate support by the FCC community
- FCC fully engaged in community supported common efforts (Key4hep)
 - The benefits of such approach are already visible
- New WG structure being put in place to better address the challenges
 - Following the advice of a dedicated task force
- Synergy with 'stakeholder' WG (Physics Performance, Detector Concepts, ...)
 is essential to make the evaluation of the FCC physics potential as realistic as
 possible

Backup

Useful pointers

Project repositories

- GitHub: https://github.com/key4hep
- CernVM-FS: /cvmfs/sw.hsf.org, /cvmfs/fcc.cern.ch

Forum: https://fccsw-forum.web.cern.ch/

Existing documentation: https://hep-fcc.github.io/fcc-tutorials/index.html

EPJ+ Software & Computing contributions (Part IV)

- Accelerator-related codes and their interplay with the experiment's software
- Online computing challenges: detector and readout requirements
- Offline Computing resources for FCC-ee and related challenges
- Key4hep, a framework for future HEP experiments and its use in FCC

Documentation, tutorials, ...

