MAD-X Benchmarking and Solenoid Models

Leon van Riesen-Haupt

Thanks to Rogelio Tomas, Tobias Persson, Helmut Burkhardt, Riccardo De Maria, Katsunobu Oide and the entire FCC Optics Team

Motivations of MAD-X Benchmarking

- Aim to ensure MAD-X can reliably simulate FCC-ee
 - A lot of MAD-X users and expertise in the collaboration
 - MAD-X developed and maintained in CERN
 - MAD-X developments strongly **driven by** LHC and **hadron machines**
- Benchmark with SAD because
 - Extensively used with SKEKB (and developed with it in mind)
 - Largest current lepton collider
 - FCC-ee lattices designed in SAD in first iteration
 - Ensure MAD-X simulation represents what design had in mind

Overview of Areas Covered

Extensive comparisons between MAD-X and SAD

- Linear optics, amplitude and momentum detuning (presentation)
- Emittance (presentation) and radiation integrals (presentation)
- On axis and tilted solenoid (presentation)

Tapering Implementation in MAD-X

- Implemented since version 5.06
- Optics in good agreement with SAD results (presentation)
- Able to get correct emittance from tracking

Dynamic Aperture Studies

- Computation of dynamic aperture without radiation in PTC (presentation)
- Input for future code development at CERN
 - Input for MAD-NG development (presentation)

Emittance in Tapered Lattices

- Previously MAD-X's emit module did not work in tapered lattices
 - Due to lack of **stable longitudinal motion**
- Stability can be achieved by matching the phase of the cavities whilst tapering
- Can compare the obtained values to
 - SAD
 - MAD-X results in un-tapered lattices at 1 GeV and scaled by energy squared

Lattice	Energy	ϵ_x @ 1 GeV	Scaled ϵ_x	Tapered ϵ_x	Design Report ϵ_{χ}
Z	45.6 GeV	$1.30 \times 10^{-5} \text{ nm}$	0.27 nm	0.27 nm	0.27 nm
WW	80 GeV	$1.30 \times 10^{-4} \text{ nm}$	0.83 nm	0.83 nm	0.84 nm
ZH	120 GeV	$4.35 \times 10^{-5} \text{ nm}$	0.63 nm	0.63 nm	0.63 nm
tt	182.5 GeV	$4.35 \times 10^{-5} \text{ nm}$	1.45 nm	1.45 nm	1.46 nm

Tilted Solenoid for Optics Calculations

- Require a solenoid definition that can accurately reflect the optics effects
 - On-axis solenoid field
 - E.g. local coupling
 - Dipolar field from tilt
 - E.g. orbit bump and radiation effects
- Need to understand the geometric implications of the solenoid
 - E.g. in **SAD** solenoid defines **reference orbit** similar to bending dipoles
- Aim is not to produce the most accurate simulation of the solenoid but one that captures the effects most crucial to optics simulations
 - See talk by H Burkhardt for other approach

Method	Benefits	Drawbacks
Misalignment of Solenoid Implemented like alignment errors	Very simpleNo need to change lattice file	 Not SAD layout Radiation in solenoid currently not correct

Misaligned Tilted Solenoid

Machine Frame

Misaligned Tilted Solenoid

Machine Frame

Method	Benefits	Drawbacks
Misalignment of Solenoid Implemented like alignment errors	Very simpleNo need to change lattice file	 Not SAD layout Radiation in solenoid currently not correct

Method	Benefits	Drawbacks
Misalignment of Solenoid Implemented like alignment errors	Very simpleNo need to change lattice file	 Not SAD layout Radiation in solenoid currently not correct
Sliced Solenoid interleaved with thin vertical bends angle = vertical dipole field $\theta = k_0 L_{slice} = k_{sol} L_{slice} \sin(\phi/2)$	 Gives correct radiation and emittance calculations 	Lattice has to be heavily modifiedNot SAD layout

Method	Benefits	Drawbacks
Misalignment of Solenoid Implemented like alignment errors	Very simpleNo need to change lattice file	 Not SAD layout Radiation in solenoid currently not correct
Sliced Solenoid interleaved with thin vertical bends angle = vertical dipole field $\theta = k_0 L_{slice} = k_{sol} L_{slice} \sin(\phi/2)$	 Gives correct radiation and emittance calculations 	Lattice has to be heavily modifiedNot SAD layout
Tilt through change of coordinate system Rotations and translations at solenoid entrance/exit	 Exact replication of SAD layout Exact agreement with SAD β, α, μ and horizontal dispersion 	 Completely new lattice file from new translator Rotation (currently) causes strange vertical dispersion EMIT does not currently work

Change of Coordinate System

01/06/2022

Method	Benefits	Drawbacks
Misalignment of Solenoid Implemented like alignment errors	Very simpleNo need to change lattice file	 Not SAD layout Radiation in solenoid currently not correct
Sliced Solenoid interleaved with thin vertical bends angle = vertical dipole field $\theta = k_0 L_{slice} = k_{sol} L_{slice} \sin(\phi/2)$	 Gives correct radiation and emittance calculations 	Lattice has to be heavily modifiedNot SAD layout
Tilt through change of coordinate system Rotations and translations at solenoid entrance/exit	 Exact replication of SAD layout Exact agreement with SAD β, α, μ and horizontal dispersion 	 Completely new lattice file from new translator Rotation (currently) causes strange vertical dispersion EMIT does not currently work

SAD-like Implementation of Tilted Solenoid

- Redefine co-ordinate system at entrance and exit of solenoid region
 - Known "tilt" at entrance
 - Zero orbit at exit
- Exact co-ordinate transformation at solenoid exit dependant on closed orbit
 - SAD determines this internally during closed orbit search
 - In MAD-X this can be achieved by matching transformations
- Features to test:
 - Optics due to solenoid and due to tilt
 - Orbit in both planes
 - Vertical dispersion due to tilted solenoid field

SAD-like Implementation of Tilted Solenoid

01/06/2022

SAD-like Implementation of Tilted Solenoid

- Redefine co-ordinate system at entrance and exit of solenoid region
 - Known "tilt" at entrance
 - Zero orbit at exit
- Exact co-ordinate transformation at solenoid exit dependant on closed orbit
 - SAD determines this internally during closed orbit search
 - In MAD-X this can be achieved by matching transformations
- Features to test:
 - Optics due to solenoid and due to tilt
 - Orbit in both planes
 - Vertical dispersion due to tilted solenoid field

Change in Optics due to Solenoid

- Solenoid field set to 0T and 2T
 - Change in optics
- Check if change in optics is the same in both codes
- Very good agreement
 - Significantly larger beating than due to conversion

 β -beating due to turning on tilted solenoid obtained using MAD-X and SAD

Change in Optics due to Solenoid

- Solenoid field set to 0T and 2T
 - Change in optics
- Check if change in optics is the same in both codes
- Very good agreement
 - Significantly larger beating than due to conversion
 - Especially in the y plane

 β -beating due to turning on tilted solenoid obtained using MAD-X and SAD

Leon van Riesen-Haupt

Orbit Bump

- Check whether the vertical orbit behaves as desired
- Zoomed in plot around the second IP (48878 m)
 - 2 m solenoid and two 1 m antisolenoid around IP

• NOTE:

- Convention is to return to "Machine Frame" at IP
- Hence zero orbit at IP
- Very good agreement

Vertical orbit bump due to tilted solenoid in FCC-ee

Vertical Dispersion

Expect a vertical dispersion bump in solenoid

- Caused by vertical dipolar field due to tilt
- Cancelled by anti-solenoid
- Important for vertical emittance
- Currently transformation causes unphysical dispersion in MAD-X
 - Plot obtained using a fix provided by T. Persson
 - Ongoing work...

20

21

Magnet Splitting Study

- Get a first idea of how magnetic gaps will affect machine performance
- First estimate of the impact of a more "realistic" lattice
 - Based on first estimates of hardware restrictions
 - Maximum magnet length about 10 m
 - Separation between magnets about 30 cm (about 3%)
- Implementation in SAD
 - Replace magnets that are longer than 10 m with equivalent sequences
 - Made of dipoles and drifts
 - Same overall length and angle
- Used tt 217 lattice

 École polytechnique fédérale de Lausanne

Leon van Riesen-Haupt

Preliminary Splitting Results

- Impact of dipole splitting with 10 m length and 30 cm gaps
 - No significant impact on linear optics and overall geometry
 - Geometry shifts by a few cm at most
 - IP β-beating of 0.01 % and 10⁻⁴ % in the vertical and horizontal plane
 - Very low dispersion beating
 - About 3% increase in radiation and beam emittance
- Linear behaviour in both emittance and total radiated power for different lengths of magnetic gaps.

École

fédérale de Lausanne

polytechnique

EPFL Conclusions

Continuous efforts to benchmark MAD-X modules against SAD

- E.g. emittance in tapered lattices
- Efforts to simulate the optics effects due to tilted solenoid
 - Different possibilities to simulate solenoid
 - Promising "SAD-like" implementation
 - Reproduces SAD layout and optics features
 - Some limitations due to element definitions
 - Complementary to more precise simulation for MDI etc.
- First iteration of study on impact on magnet splitting and gaps
 - Negligible effect on optics and layout
 - Predictable effect on radiation and emittance

23

Leon van Riesen-Haup

EPFL

Many thanks for your attention!

Questions welcome!

 École polytechnique fédérale de Lausanne