Simulations of the Spin Polarization for the Future Circular Collider e+e- using Bmad

Yi Wu¹, Félix Carlier², Tatiana Pieloni¹

¹École Polytechnique Fédérale de Lausanne (EPFL) ²The European Organization for Nuclear Research (CERN)

Acknowledgments to Alain Blondel, Desmond Barber, David Sagan, Eliana Gianfelice-Wendt, Tessa Charles, Jörg Wenninger, Werner Herr, and all colleagues

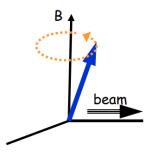
Swiss Accelerator Research and Technology

Outline

- Introduction to the Spin Polarization Theory
- Iinear Spin Polarization Simulations in Bmad
- 4 Benchmark between Tao (Bmad) and SITF (SITROS)
- 5 Nonlinear Spin Tracking in Bmad

Motivation

- Center-of-mass collision energy calibration with high precision
- Precise beam energy calibration using resonant depolarization
- Spin simulations for the validation of the energy calibration method
- Bmad, a simulation tool that allows full lattice control and the spin simulations
- Sufficient polarization levels under various orbital conditions are required for the energy calibration


Bmad Home Page, https://www.classe.cornell.edu/bmad/

Spin Precession

The spin precession under electromagnetic field can be described by the Thomas-BMT equation

$$\frac{\mathrm{d}\hat{S}}{\mathrm{d}s} = \left(\vec{\Omega}^{c.o}(s) + \vec{\omega}^{s.b}(\vec{u};s)\right) \times \hat{S}$$
$$\vec{u} \equiv (x, x', y, y', z, \delta)$$

FCC Week 2022

Figure from Bai, M. (2010, December). Polarized protons and siberian snakes.

Important Definitions about the Spin Quantities EPFL

• $\hat{n}_0(s)$

- the periodic and stable spin direction on the closed orbit
- the precession axis for spins on the closed orbit

• v₀

- closed orbit spin tune,
- the number of spin processions around \hat{n}_0 per turn on the closed orbit
- $u_0 = a\gamma$ in the perfectly aligned flat ring without solenoids
- $\nu_0 \neq a\gamma$ in general
- $\hat{n}(\vec{u};s)$
 - invariant spin field
 - the one-turn periodic unit vector that satisfies the T-BMT equation depending on $(\vec{u}; s)$
 - $\hat{n}(\vec{u};s) = \hat{n}(\vec{u};s+C)$

Polarization Build-Up

• Sokolov-Ternov (ST) effect: spin-flip synchrotron radiation emission

$$P_{ST} = rac{W_{\uparrow\downarrow} - W_{\downarrow\uparrow}}{W_{\uparrow\downarrow} + W_{\downarrow\uparrow}} \simeq 92.38\%$$
 and $au_{ST}^{-1} = rac{5\sqrt{3}}{8}rac{r_e\gamma^5\hbar}{m_e|
ho|^3}$

• Baier-Katkov-Strakhovenko (BKS) polarization level

$$\vec{P}_{BKS} = -\frac{8}{5\sqrt{3}}\hat{n}_0 \frac{\oint \mathrm{d}s \frac{\hat{n}_0(s) \cdot \hat{b}(s)}{|\rho(s)|^3}}{\oint \mathrm{d}s \frac{\left[1 - \frac{2}{9}(\hat{n}_0 \cdot \hat{s})^2\right]}{|\rho(s)|^3}}$$
$$\tau_{BKS}^{-1} = \frac{5\sqrt{3}}{8} \frac{r_e \gamma^5 \hbar}{m_e} \frac{1}{C} \oint \mathrm{d}s \frac{\left[1 - \frac{2}{9}\left(\hat{n}_0 \cdot \hat{s}\right)^2\right]}{|\rho(s)|^3}$$

Polarization Build-Up with Radiative Depolarization

- Radiative depolarization due to the spin diffusion
- \bullet ST effect + radiative depolarization \rightarrow equilibrium polarization
- Derbenev–Kondratenko–Mane (DKM) formula when radiative depolarization is considered

$$\begin{split} P_{DK} &= -\frac{8}{5\sqrt{3}} \times \frac{\oint \mathrm{d}s \left\langle \frac{1}{|\rho(s)|^3} \hat{b} \cdot \left(\hat{n} - \frac{\partial \hat{n}}{\partial \delta}\right) \right\rangle_s}{\oint \mathrm{d}s \left\langle \frac{1}{|\rho(s)|^3} \left(1 - \frac{2}{9} \left(\hat{n} \cdot \hat{s}\right)^2 + \frac{11}{18} \left(\frac{\partial \hat{n}}{\partial \delta}\right)^2\right) \right\rangle_s} \\ \tau_{DK}^{-1} &= \tau_{BKS}^{-1} + \tau_{dep}^{-1} \\ \tau_{dep}^{-1} &= \frac{5\sqrt{3}}{8} \frac{r_e \gamma^5 \hbar}{m_e} \frac{1}{C} \oint \mathrm{d}s \left\langle \frac{11}{18} \left(\frac{\partial \hat{n}}{\partial \delta}\right)^2}{|\rho(s)|^3} \right\rangle_s \end{split}$$

• $\partial \hat{n} / \partial \delta$: the spin-orbit coupling function

7/30

Spin-Orbit Resonances

The spin-orbit resonances

$$\nu_0 = m + m_x Q_x + m_y Q_y + m_z Q_z$$

 $|m_x| + |m_y| + |m_z| = 1$ first order spin-orbit resonances

- Away from resonance $\Rightarrow \hat{n}(\vec{u}; s)$ almost aligned with $\hat{n}_0(s)$
- Near resonances $\Rightarrow \hat{n}(\vec{u}; s)$ deviates from $\hat{n}_0(s) \Rightarrow \text{large } \partial \hat{n} / \partial \delta \Rightarrow$ lower polarization

Spin Polarization Simulations in Bmad

- Sufficient polarization level should be available for the energy calibration using resonant depolarization
- Tao (Bmad)
 - the linear polarization calculation module in Bmad
 - check the influence of the 1st order spin-orbit resonances
- Long-Term Tracking
 - the nonlinear spin tracking module
 - check the influence of the higher order resonances, which may become significant at higher energies

Bmad Home Page, https://www.classe.cornell.edu/bmad/

Main Lattice Parameters

Sequence 217 at Z energy is used in the simulations

Circumference (km)	97.756
Beam energy (GeV)	45.6
β_x^* (m)	0.15
β_y^* (mm)	0.8
ϵ_x (nm)	0.27
ϵ_y (pm)	1
Synchrotron tune Q_z	0.025
Horizontal tune Q_x	269.139
Vertical tune Q_y	269.219

Table: Main parameters at Z energy

FCC collaboration. (2019). FCC-ee: The Lepton Collider: Future Circular Collider Conceptual Design Report Volume 2. European Physical Journal: Special Topics, 228(2), 261-623.

Effective Model

- Use an effective model to simulate realistic orbital motions after lattice correction
- The errors are randomly distributed obeying the truncated Gaussian distributions (truncated at 2.5 σ)

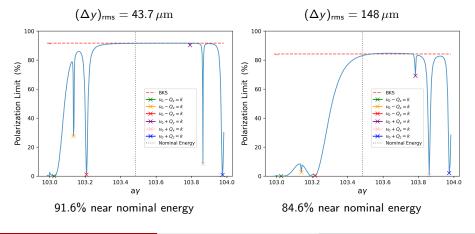

Туре	$\sigma_{\Delta X}$	$\sigma_{\Delta Y}$	$\sigma_{\Delta S}$	$\sigma_{\Delta PSI}$	$\sigma_{\Delta THETA}$	$\sigma_{\Delta \mathrm{PHI}}$
	(μm)	(μm)	(µm)	(μrad)	(μrad)	(μrad)
Arc quadrupole	0.1	0.1	0.1	2	2	2
Arc sextupole	0.1	0.1	0.1	2	2	2
Dipoles	0.1	0.1	0.1	2	0	0
IR quadrupole	0.1	0.1	0.1	2	2	2
IR sextupole	0.1	0.1	0.1	2	2	2

Table: An effective model for the small error generation used in the spin-orbit simulations

Energy Scan in Tao

- Energy scans using two error seeds generated from the effective model
- Six first order spin-orbit resonances between two integer spin tunes

Robustness of the Error Generation Method

- The effective model is an efficient way for the proceeding of the current spin polarization research
- 100 error seeds were generated to check the robustness of the effective model

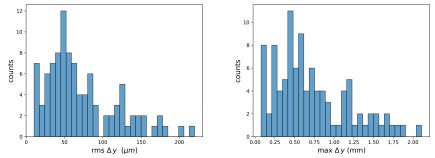


Figure: Distribution of the rms (left) and maximum (right) vertical orbits deviation of 100 produced errors

A more robust error generation method are needed in the future

yi.wu@epfl.ch (EPFL)

FCC Week 2022

Benchmark between Tao (Bmad) and SITF

- SITF, the linear spin simulation module in SITROS
- Both SITF and Tao (Bmad) belong to SLIM family
- $\bullet\,$ Underlying differences between two codes exist \rightarrow check step by step

Figure: Energy scan using sequence version 213 seed 13 in SITF (left) and Tao (right)

SITF plot is from Eliana Gianfelice-Wendt

Parameter Comparisons using Clean Lattice

 $\bullet\,$ Clean lattice without misalignments at $45.6\,{\rm GeV}$

	Q_{x}	Q_y	Qz	<i>x</i> _{rms}	<i>y</i> _{rms}	eta_{x} at IP.1	eta_y at IP.1
				[mm]	[mm]	[m]	[mm]
MADX	269.1354	269.2105	0.0247	0.027	0	0.1495	0.8
Tao	269.1354	269.2105	0.0247	0.027	0	0.1495	0.8
SITF	269.1354	269.2108	0.0247	0.027	0	0.1495	0.8

 Simple lattice with 10 nm x and y misalignments in one IR quadrupole (QC1L1.1)

	Q_{x}	Q_y	Qz	x _{rms}	y _{rms}	$\beta_{\rm X}$ at IP.1	eta_y at IP.1
				[mm]	[mm]	[m]	[mm]
MADX	269.1354	269.2105	0.0247	0.027	0.004	0.1495	0.8
Tao	269.1354	269.2105	0.0247	0.027	0.004	0.1495	0.8
SITF	269.1354	269.2106	0.0247	0.027	0.004	0.1495	0.8

\hat{n}_0 Deviation Comparison

- \hat{n}_0 , the central quantity for the spin polarization description
- Away from integer spin tune $\Rightarrow \hat{n}_0$ almost aligned with the vertical
- Near integer spin tune $\Rightarrow \hat{n}_0$ deviates from the vertical

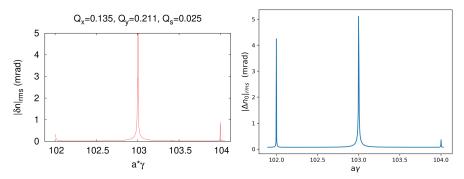


Figure: Variation of the rms \hat{n}_0 deviation from the vertical in SITF (left) and Tao (right)

SITF plot is from Eliana Gianfelice-Wendt

Benchmark between Tao, SITF and SLIM

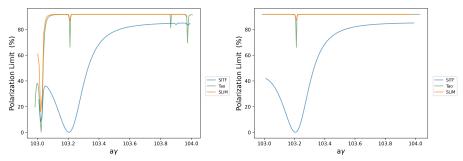
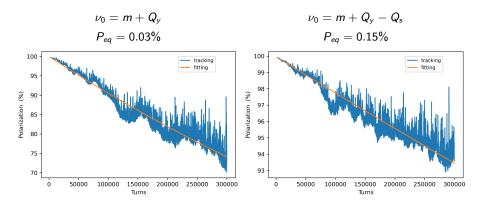


Figure: Energy scan of the equilibrium polarization (left) and the vertical mode polarization (right) by three codes

The difference may lie in the computation for the spin-orbit coupling function $\partial \hat{n} / \partial \delta$.

SITF and SLIM data are from Eliana Gianfelice-Wendt

Nonlinear Spin Tracking

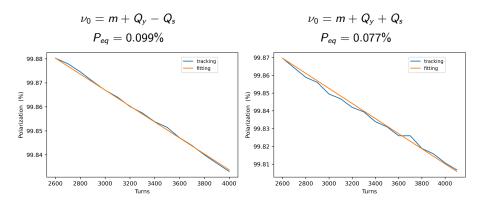

- The higher order resonances may become prominent at high energies and affect the achievable polarization level
- Obtain τ_{dep} via Monte-Carlo spin tracking, while P_{BKS} and τ_{BKS} are computed at closed orbit

$$egin{aligned} P(t) &= P_{DK} \left[1 - e^{-t/ au_{DK}}
ight] + P_0 e^{-t/ au_{DK}} \simeq P_0 e^{-t/ au_{dep}} \ P_{eq} &\simeq P_{BKS} rac{ au_{dep}}{ au_{BKS} + au_{dep}} \end{aligned}$$

Long-Term Tracking in Bmad

10 electrons, PTC

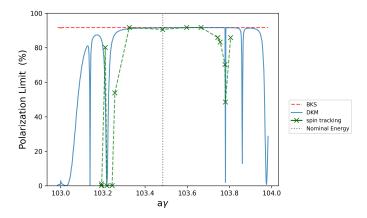
Large fluctuations, need more particles


yi.wu@epfl.ch (EPFL)

FCC Week 2022

Long-Term Tracking in Bmad

500 electrons, PTC


Small fluctuations, but time consuming

yi.wu@epfl.ch (EPFL)

FCC Week 2022

Preliminary Results of Nonlinear Spin Tracking

100 particles, 10000 turns, PTC

Need over 1000 particles, over 10000 turns

yi.wu@epfl.ch (EPFL)

FCC Week 2022

21 / 30

Summary

- The exploration of the FCC-ee spin polarization simulations using Bmad shows promising results
- Linear polarization simulations offer a proof of concept, manifesting the influence of the 1st order resonances
- Benchmarks with SITROS in the linear spin calculation regime reveal underlying differences between codes
- First attempts at nonlinear spin trackings highlight the technical challenges associated with such simulations
- Further results will be presented in the EPOL meetings

Thank you!

Backup Slides



Figure: Distribution of the maximum horizontal (left) and vertical (right) orbits deviation of 100 produced errors

24 / 30

Backup Slides

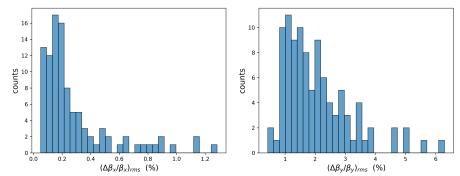


Figure: Distribution of the rms horizontal (left) and vertical (right) beta beating of 100 produced errors

A more robust error generation model is needed.

yi.wu@epfl.ch (EPFL)

FCC Week 2022

Backup Slides

- Match the main parameters with the designed values
- Simplified matching: using the elements in RF section
- Optimized matching: adding BPMs, kickers and correctors

	Step order	"Data"	"Variables"			
	1	x and z at IPs, Q_z	phi0, voltage			
No err	2	eta^* , Q_x , Q_y	correctors, RF Quad			
	3	(recheck Data in step 1)	(phi0, voltage)			
	4	save orbits at BPMs				
	5	orbits at BPMs and IPs (higher weight)	kickers			
Add err	6	eta^* , $oldsymbol{Q}_{x}$, $oldsymbol{Q}_{y}$	correctors, RF quad			
	7	x and z at IPs, Q_z	phi0, voltage			

Table: The optimized procedures for the parameter matching

26 / 30

Match the main parameters with the designed value

- Simplified matching: using the elements in RF section
- Optimized matching: adding BPMs, kickers and correctors

Attributes	Designed value	With RF Section	With Kickers, Correctors	Deviation (%)
eta_x^* at IP.1/4 (m)	0.15	0.15	0.15	0
eta_y^* at IP.1/4 (mm)	0.8	0.7977	0.79941	0.074
eta_x^* at IP.2/3 (m)	0.15	0.15	0.15	0
β_y^* at IP.2/3 (mm)	0.8	0.79	0.79947	0.066
x at IP.1/4 (nm)	0	-180	10	N.A.
z at IP.1/4 (nm)	0	20	1.5	N.A.
x at IP.2/3 (nm)	0	-270	390	N.A.
z at IP.2/3 (nm)	0	-20	1.5	N.A.
Synchrotron tune Q_s	0.025	0.0247	0.025	0
Horizontal tune Q_x	269.139	269.139	269.139	0
Vertical tune Q_y	269.219	269.219003	269.219	0

Spin-Orbit Coupling Function Comparison

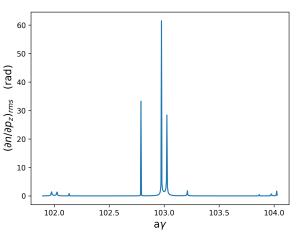


Figure: Variation of the rms spin-orbit coupling function $\partial \hat{n} / \partial \delta$ computed by Tao

Spin-Orbit Resonances

The ensemble average of the polarization

$$\left\langle ec{P}_{DK}
ight
angle _{ens}\left(s
ight)=P_{DK}\left\langle \hat{n}
ight
angle _{s}$$

Energy Scan Comparison with Simple Lattice

• Main difference comes from the vertical mode polarization

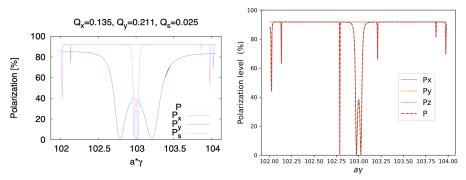


Figure: Energy scans using the simple lattice with one misalignment in SITF (left) and Tao (right)

SITF plot is from Eliana Gianfelice-Wendt