
Accelerators Summary

Jacqueline Keintzel

On behalf of the FCC-ee collaboration

Acknowledgements: Michael Benedikt, Tor Raubenheimer, Frank Zimmermann All colleagues

Future Circular Collider

FCC WEEK 2022

03 JUN 2022

JACQUELINE KEINTZEL SUMMARY ACCELERATORS

2

FUTURE CIRCULAR COLLIDER

Overview

- 11 sessions with 52 talks
- 21 posters total

Day	Monday		Tue	sday			Wednesday			Thu	sday		Friday	Time
Room	Plenary	Parallel 1	allel 1 Parallel 2 Parallel 3 Parralel 4 Parallel 1 Parallel 2 Parallel 3 Parallel		Parallel 1	Parallel 2	Parallel 3	Parallel 4	Plenary	Room				
	Campus Cordeliers	CICSU Jussieu			Campus Cordeliers Réfectoire		Campus Cordeliers Réfectoire				Campus Cordeliers			
Time	FARABOEUF	Room 105	Room 107	Room 109	Room 116	ROUSSY	PASQUIER	Cordeliers	FARABOEUF	Cordeliers		Cordeliers	FARABOEUF	Time
09:00-09:30		FCCee	Phy	FCCIS WP4		FCC hh		FCCIS WP3	PED/ACC: RF Points for				09:00-09:30	
09:30-10:00	Plenary	accelerator FCCIS WP2	Programme/ Performance	Socio Econom		accelerator	PED: EPOL	Placement	FCCee EPOL	FCC-ee	Technology		Summaries	09:30-10:00
10:00-10:30	session	Chairperson	Chairperson	Chairperson		Chairperson	Chairperson	Chairperson	Chairperson Chairperson Chairperso		Chairperson		Chairperson	10:00-10:30
10:30-11:00	Coffee break		Coffee	break			Coffee break			Coffee	break		Coffee break	10:30-11:00
11:00-11:30	Plenary	FCCee	Phy	SRF			PED:	Civil	PED/ACC:	Electricity	-			11:00-11:30
11:30-12:00	session	accelerator FCCIS WP2	Programme/ Performance	Directions for R&D		Technology	Detector Concepts	Engineering	FCCee MDI	and Cooling	Technology		Summaries	11:30-12:00
12:00-12:30	Chairperson	Chairperson	Chairperson	Chairperson		Chairperson	Chairperson	Chairperson	Chairperson	Chairperson	Chairperson		Chairperson	12:00-12:30
12:30-14:00	Lunch break		Lunch	break		Lunch break		Lunch break					12:30-13:00	
14:00-14:30		FCCee	Phy	Technology	ISC meeting	FCCee	PED:	FCCIS WP5	PED/ACC:	Transport &				14:00-14:30
14:30-15:00	Plenary session	injector FEB	Programme/ Performance	SRF	CLOSED	accelerator	Detector Concepts	Collaboration	FCCee MDI	logistics, Safety				14:30-15:00
15:00-15:30		Chairperson	Chairperson	Chairperson	F. Gianotti	Chairperson	Chairperson	Chairperson	Chairperson	Chairperson				15:00-15:30
15:30-16:00	Chairperson		Coffee	break			Coffee break			Coffee	break			15:30-16:00
16:00-16:30	Coffee break	FCCee	Phy	Technology	ISC meeting	FCCee	TI Geodesy	FCCIS WP5				France,		16:00-16:30
16:30-17:00	Plenary	injector FEB	Programme/ Performance	SRF	CLOSED	accelerator	and survey	Communicati				special session		16:30-17:00
17:00-17:30	session	Chairperson	Chairperson	Chairperson	F. Gianotti	Chairperson	Chairperson	Chairperson				Chairperson		17:00-17:30
17:30-18:00	Chairperson											Poster		17:30-18:00
18:00-18:30		8				Discussion	ICB meeting					session & DRINK		18:00-18:30
						with iuniors	CLOSED							

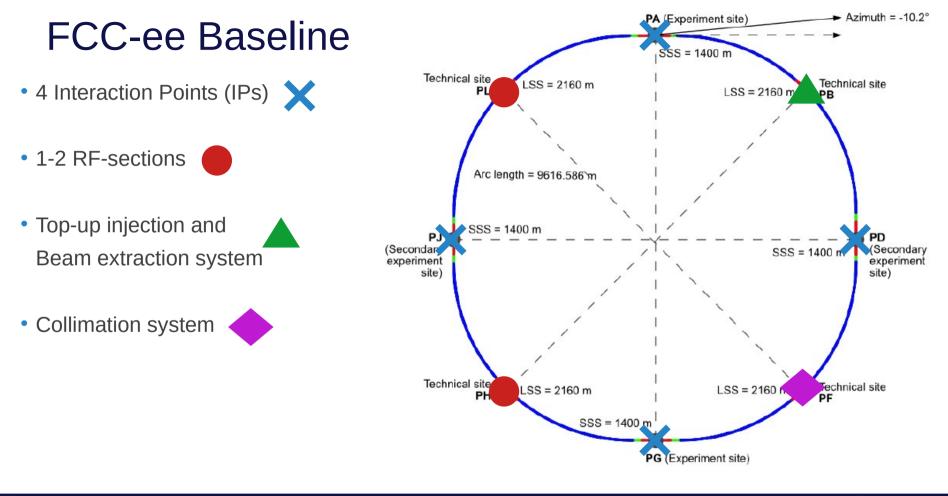
FCC WEEK 2022 03 JUN 2022 JACQUELINE KEINTZEL SUMMARY ACCELERATORS

3

FUTURE CIRCULAR COLLIDER

FCC-ee Accelerator I, Tuesday 31st June

09:00	FCC-ee parameter optimisation	Dmitry Shatilov
	CICSU	09:00 - 09:30
	Baseline optics and layout of the FCC-ee collider ring	Michael Hofer
	CICSU	09:30 - 09:50
	Optics correction studies	Tessa Charles
10:00	CICSU	09:50 - 10:10
	Top-up Injection into the FCC-ee Collider Ring	Patrick James Hunchak
	CICSU	10:10 - 10:30



JACQUELINE KEINTZEL SUMMARY ACCELERATORS

URE

FCC WEEK 2022

03 JUN 2022

JACQUELINE KEINTZEL SUMMARY ACCELERATORS

6

FUTURE CIRCULAR

FCC-ee Baseline

03 JUN 2022

 90°/90° arc cells for all energy stages, fewer quadrupoles at Z 200 [E] 8 100 Crossing outwards the ring at all IPs to avoid impact Ē____5 ≻___10 [ຍ] ^{0.50} ອ^x 0.25 of synchrotron radiation -15 0.00 -20 -1000-500 500 1000 1500 Ó 100 200 300 400 500 X [m] s [m] Ouadrupole Dipole LCCS in y-plane LCCS in y-plane +Crab sextupole +Crab sextupole ttbar Dipole 200 E 100 βx 6000 [ඩ 4000 භූ 2000 Ξ^{0.50} 0 [^w] ^xO –0.5 o 0.25 0.00 -800-600-400-200 200 400 Ó 200 100 300 500 400 s [m] s [m] CERN FCC WEEK 2022 JACQUELINE KEINTZEL

SUMMARY ACCELERATORS

FUTURE CIRCULAR COLLIDER

7

Ouadrupole

Dipole

M. Hofer, K. Oide

FCC-ee Baseline

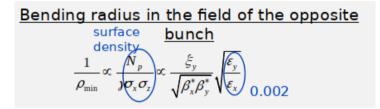
M. Hofer, K. Oide

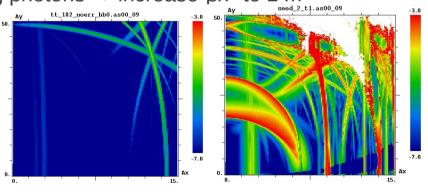
New Version V22		Z (45.6	GeV)	<i>t</i> ℓ̄ (182.5 GeV)			
Can be found on Gitlab:	Operation mode	V22.2	CDR	V22.2	CDR		
https://gitlab.cern.ch/acc-models/acc-models-fcc.git	Circumference [km]	91.17	97.75	91.17	97.75		
 Changes wrt CDR: 	Bending radius of main dipoles [km]	9.937	10.76	9.937	10.76		
Lower circumference	Energy loss/turn [GeV]	0.0391	0.036	10.0	9.2		
 4 IPs instead of 2 IPs 	Bunches/beam	10000	16640	40	48		
• Smaller β_x at Z-pole	Bunch population [10 ¹¹]	2.43	1.7	2.37	2.3		
	Hor. Emittance [nm]	0.71	0.27	1.49	1.46		
	Ver. Emittance [pm]	1.42	1.0	2.98	2.9		
	β_x^*/β_y^* [mm]	100/0.8	150/0.8	1000/1.6	1000/1.6		
	Luminosity/IP $[10^{34}cm^{-2}s^{-1}]$	182	230	1.24	1.5		

8

COLLIDER

- Lower circumference
- 4 IPs instead of 2 IPs
- Smaller β_x at Z-pole


FCC WEEK 2022 03 JUN 2022


JACQUELINE KEINTZEL SUMMARY ACCELERATORS

D. Shatilov

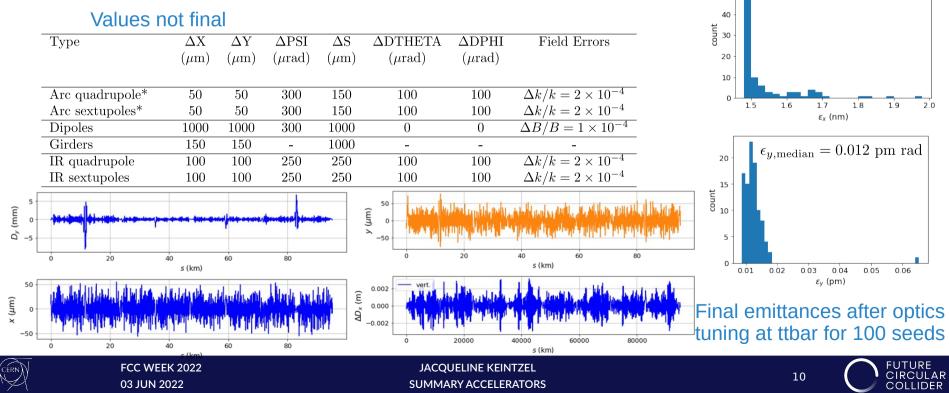
FCC-ee Parameter Optimization

- Beam-beam parameter optimization ξy important
- Beamstrahlung leads to local bending radius at the IP
- At Z-, WW- and ZH-lattice :
 - 90°/90° optics for larger momentum compaction
 - Decrease of βy^* to 10 cm from 15 cm
 - Larger RF-voltage to increase synchrotron tune to mitigate TMCI
- At ttbar-lattice: Luminosity limited by beamstrahlung photons \rightarrow increase βx^* to 1 m
- Lattice errors enhance resonances, e.g. footprint
- 2 IP simpler (commissioning, tolerances, etc.) compared to 4 IP lattice
- CDR Integrated luminosity perhaps not achievable with errors for 2 IPs, to be studied in detail for 4 IPs

FCC WEEK 2022 03 JUN 2022

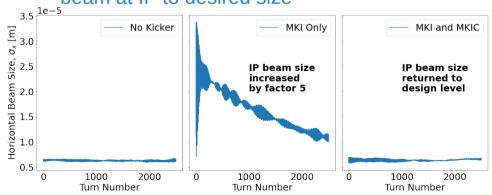
JACQUELINE KEINTZEL SUMMARY ACCELERATORS

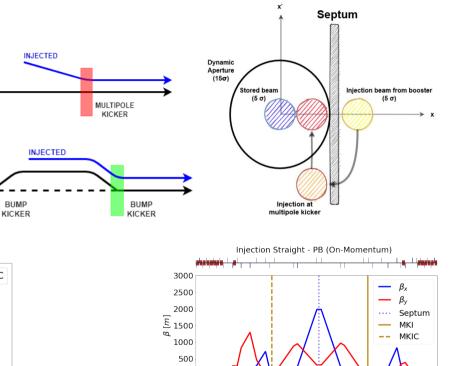
g

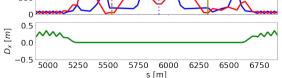

Optics Correction Studies

T. Charles

50


 $\epsilon_{x,\text{median}} = 1.497 \text{ nm rad}$


- Gaussian distribution misalignment and optics errors applied to elements
- Linear optics very well corrected, sextupole strengths increased slowly



Top-Up Injection

- Multipole Kicker Injection (MKI)
 - On- and off-momentum injection
 - 180° phase advance between kickers
 - · Large optics at injection point
- Conventional orbit bump also studied Using MKI with correction magent restores beam at IP to desired size

FCC WEEK 2022 03 JUN 2022 JACQUELINE KEINTZEL SUMMARY ACCELERATORS

P. Hunchak

STORED

11

FUTURE

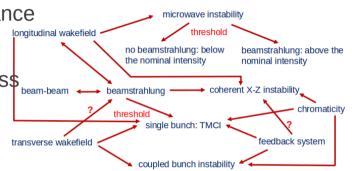
CIRCULAR

FCC-ee Accelerator II, Tuesday 31st June

11:00	Single-beam collective effects	Mauro Migliorati
	Room 105, CICSU	11:00 - 11:20
	Single-bunch instabilities	Emanuela Carideo
	Room 105, CICSU	11:20 - 11:35
	Resistive-wall impedance	Ali Rajabi
	Room 105, CICSU	11:35 - 11:55
12:00	Combined effect beam-beam & impedance	Yuan Zhang
	Room 105, CICSU	11:55 - 12:15
	Recent Advances on the FCC-ee Electron Cloud Build-up Studies	Dr Fatih Yaman
	Room 105, CICSU	12:15 - 12:30

FCC WEEK 2022 03 JUN 2022

JACQUELINE KEINTZEL SUMMARY ACCELERATORS



Single Beam Collective Effects

- Z-lattice most critical in terms of impedance
- Resistive wall and bellows main contributors to impedance
- Resistive wall impedance
 - Neg and copper coating, Im increases with Neg thickness
- Detailed impedance model for Bellows (~20 000)

M. Migliorati

Interplay between different collective effects for

FCC-ee (mainly single bunch) that we have analysed so far

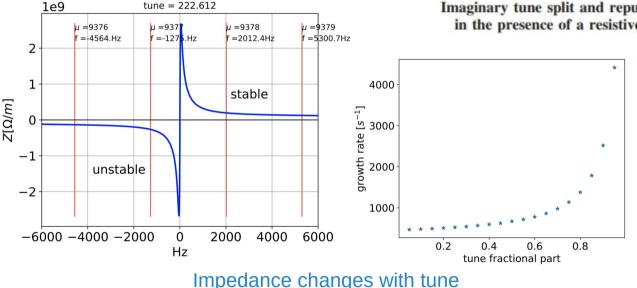
Complex interplay of collective effects with optics (tune, chromaticity,...) etc. and must be studied for the FCC-ee

Impedance model constantly updated Not yet all contributors included (collimation, vacuum flanges, ...)

Need to find mitigation strategies

FCC WEEK 2022 03 JUN 2022

JACQUELINE KEINTZEL SUMMARY ACCELERATORS



FUTURE

CIRCULAR

Single Beam Collective Effects

- Growth times about 6 turns \rightarrow maybe one feedback system not sufficient, or to be optimized
- Impact of feedback system on instabilities to be studied

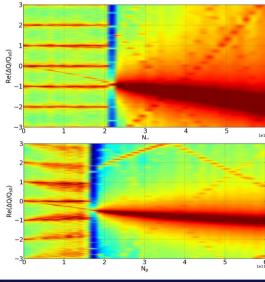
Imaginary tune split and repulsion single-bunch instability mechanism in the presence of a resistive transverse damper and its mitigation

PHYSICAL REVIEW ACCELERATORS AND BEAMS 24, 041003 (2021)

[...] However, a resistive transverse damper also destabilizes the singlebunch motion below the transverse mode coupling instability intensity threshold (for zero chromaticity), introducing a new kind of instability, which has been called ITSR instability (for imaginary tune split and repulsion). [...]

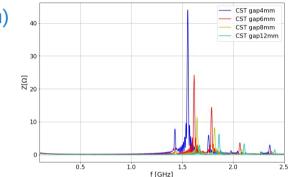
M. Migliorati

FCC WEEK 2022 03 JUN 2022 JACQUELINE KEINTZEL SUMMARY ACCELERATORS

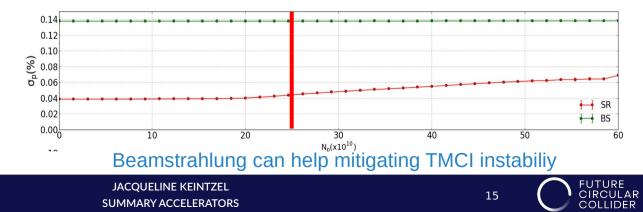

FUTURE

CIRCULAR

Single Bunch Instabilities

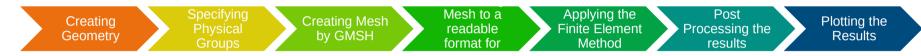

- E. Carideo
- Wake potentials used to define Green-functions of various impedance sources
- Gitlab repository available: https://gitlab.cern.ch/ecarideo/FCCee_IW_Model

Transverse (top) + longitudinal (bottom) TMCI, with both acceptance reduced Bunch length 4.37 mm



FCC WEEK 2022

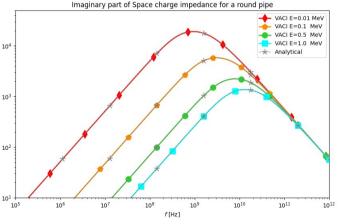
03 JUN 2022


Impedance model for collimators in progress based on knowledge for HL-LHC, constant at low frequency, non-linear fit for higher frequencies

Resistive Wall Impedance

A. Rajabi


• Code developed: VACI (Vacuum Chamber Impedance suite), solves Maxwell's Equations



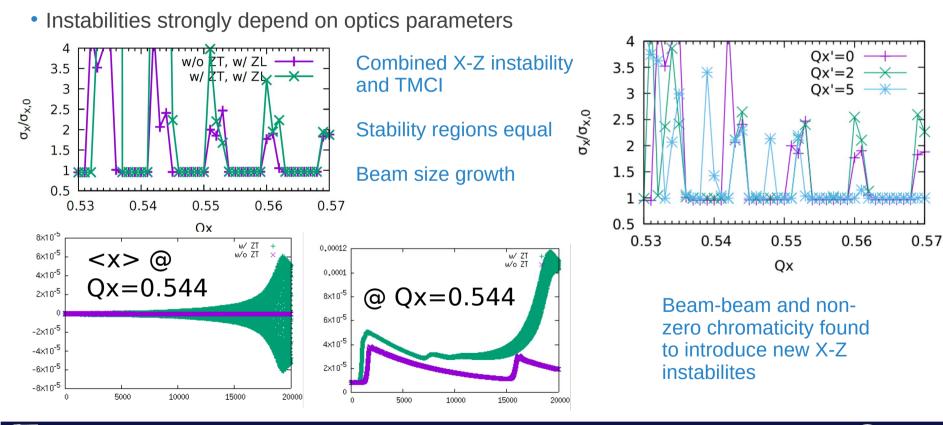
- Wake fields calculated
- Resistive wall impedance calculated

Very good agreement between analytical model and VACI

Copper pipe without NEG coating calculated and in good agreement with other codes

FCC WEEK 2022 03 JUN 2022

JACQUELINE KEINTZEL SUMMARY ACCELERATORS



FUTURE

CIRCULAR

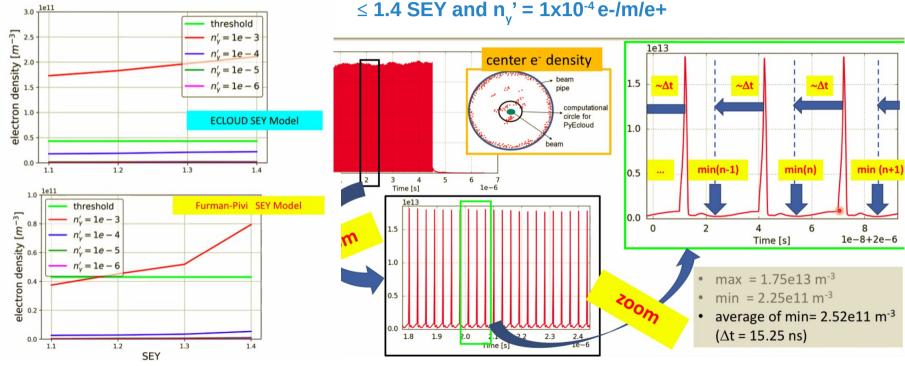
Beam-beam and Impedance

Y. Zhang

FCC WEEK 2022

03 JUN 2022

JACQUELINE KEINTZEL SUMMARY ACCELERATORS



17

FUTURE CIRCULAR COLLIDER

Electron Cloud Build up

Simulations performed with PyECLOUD and Furman-Pivi Model

\leq 1.4 SEY and n['] = 1x10⁻⁴ e-/m/e+

FCC WEEK 2022

03 JUN 2022

JACQUELINE KEINTZEL SUMMARY ACCELERATORS

18

FUTURE CIRCULAR

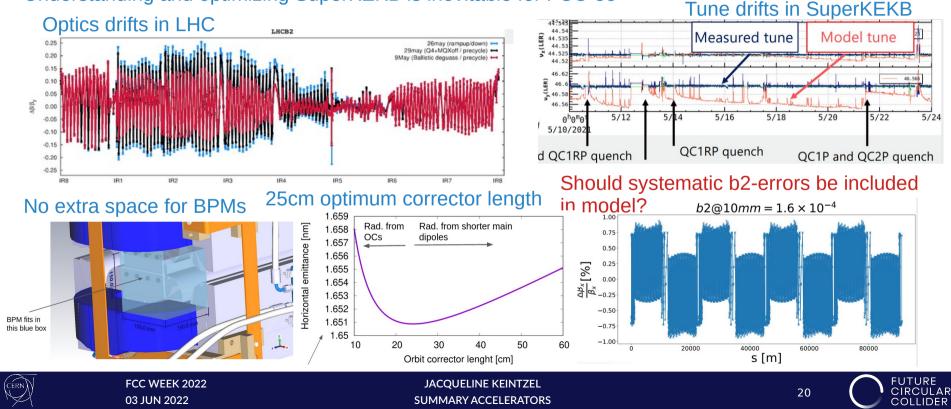
COLLIDER

F. Yaman

FCC-ee Accelerator IV, Wednesday 1st June

14:00	Correction and tuning	Rogelio Tomas Garcia
	ROUSSY, Campus des Cordeliers	14:00 - 14:20
	Studies of the ground motion induced vibrations in FCC-ee Z mode	Eva Montbarbon
	ROUSSY, Campus des Cordeliers	14:20 - 14:40
	Alignment network error propagation and alignment examples	Georg Gassner
15.00	ROUSSY, Campus des Cordeliers	14:40 - 15:05
15:00	ESRF optics correction tools	Simone Liuzzo
	ROUSSY, Campus des Cordeliers	15:05 - 15:30

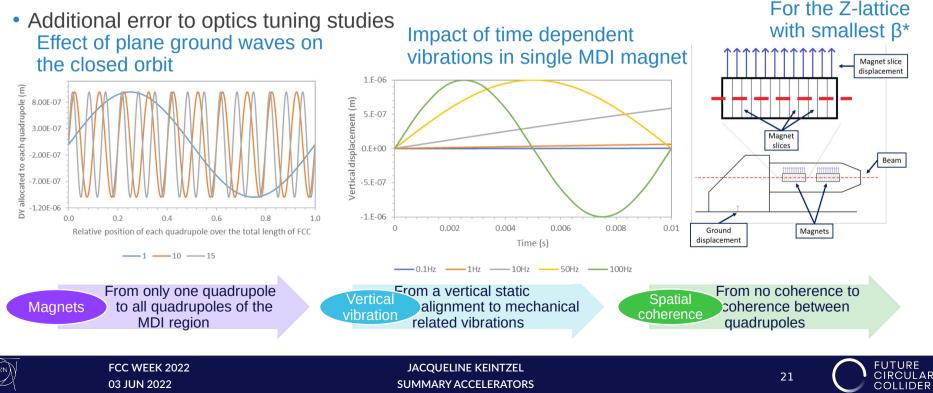
FCC WEEK 2022 03 JUN 2022


JACQUELINE KEINTZEL SUMMARY ACCELERATORS

Correction and Tuning

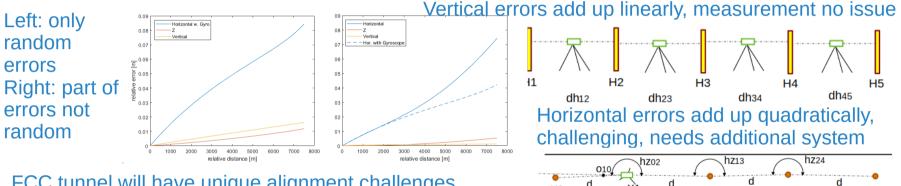
R. Tomas

• Optics drifts also in LHC and SuperKEKB → fast and efficient tuning required for FCC-ee Understanding and optimizing SuperKEKB is inevitable for FCC-ee



Ground Motion Induced Vibration

- Aim to link beam optics to mechanical design
- How to other contributions (ocean, tides, etc.) impact the optics?


E. Montbarbon

• Aim to quantify impact of vibrating MDI quadrupoles on beam characteristics

Alignment

- Typically randomly distributed alignment errors presumed, however:
- A lot of errors are not random (environment, refraction, instrument errors, etc.)

FCC tunnel will have unique alignment challenges

311 Laser Tracker (Leica AT401/402) setups with 5082 measurements

577 Height differences (Leica DNA03)

200 Linac Light Pipe readings

- (3km 6 weeks with 1 crew (2-person)
- ->100km -> 200 weeks 1 crew + above ground network)

(cérn

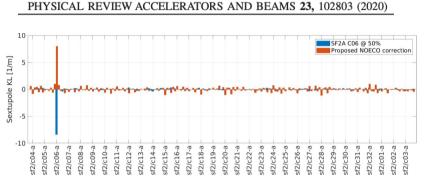
FCC WEEK 2022 03 JUN 2022

How can beam based alignment help?

JACQUELINE KEINTZEL

SUMMARY ACCELERATORS

Tunnel moves, especially after construction Floor movement relative to the network measure -03-200Lindulator Hal Near Experimental Hall -02-2009 -9-2012 - 10.2014 -6.2017


G. Gassner

ESRF Optics Correction Tools

• ESRF tooles used to start simulating FCC-ee commissioning

10 μ m misalignment (truncated at 2.5 σ) applied

s [m]

Compute sextupole correction strengths based on off-energy Fast-RM and dispersion measurement in ESRF

S. Liuzzo

open trajectory (steerers) Tikhonov tune (quadrupoles, 2 families) RF cavity orbit (steerers) Tikhonov tune (quadrupoles, 2 families) chromaticity (sextupoles, 2 families) orbit (steerers) Tikhonov tune (quadrupoles, 2 families) chromaticity (sextupoles, 2 families) Fit Quad+Dip Errors Correct RDT and Dispersion of fitted model orbit (steerers) Tikhonov tune (quadrupoles, 2 families) chromaticity (sextupoles, 2 families) Fit Quad+Dip Errors Correct RDT and Dispersion of fitted model RF cavity tune (quadrupoles, 2 families)

x misal

z misal

Rot s-ax

9

Correction strategy for

Allows to correct optics and study DA, MA, etc...

E 20

 $\nu_{v} = 222.175$

 $\delta p/p = 0.000$

1 period, C= 91180.211

FCC WEEK 2022 03 JUN 2022

JACQUELINE KEINTZEL SUMMARY ACCELERATORS

23

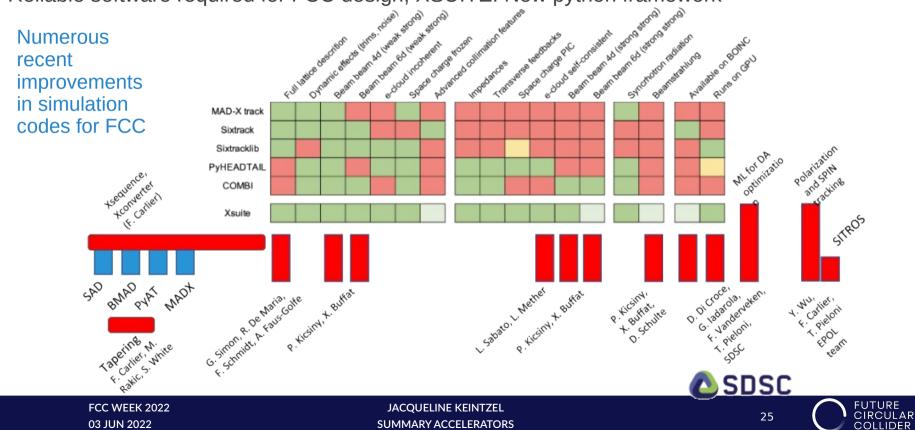
FUTURE

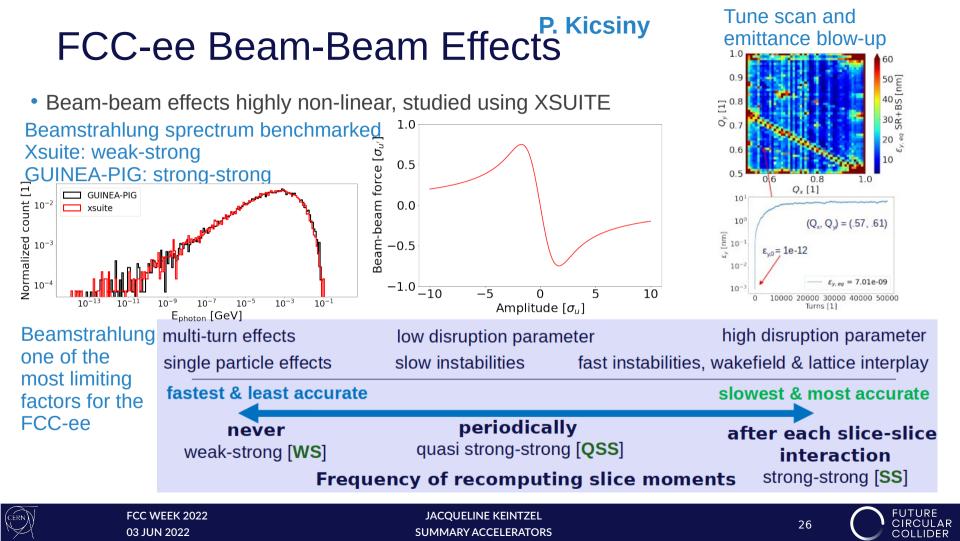
CIRCULAR

FCC-ee Accelerator V, Wednesday 1st June

Overview of the Software framework and developments for the FCC-ee	Felix Simon Carlier et al.
ROUSSY, Campus des Cordeliers	16:00 - 16:15
Simulations of FCC-ee beam-beam effects with xsuite	Peter Kicsiny
ROUSSY, Campus des Cordeliers	16:15 - 16:30
MAD-X progress	Riccardo De Maria
ROUSSY, Campus des Cordeliers	16:30 - 16:45
FCC-ee Collimation Studies	Andrey Abramov
ROUSSY, Campus des Cordeliers	16:45 - 17:00
MAD-X benchmarking and solenoid models	Leon Van Riesen-Haupt
ROUSSY, Campus des Cordeliers	17:00 - 17:15
IR solenoid modelling	Helmut Burkhardt
ROUSSY, Campus des Cordeliers	17:15 - 17:30
	ROUSSY, Campus des CordeliersSimulations of FCC-ee beam-beam effects with xsuiteROUSSY, Campus des CordeliersMAD-X progressROUSSY, Campus des CordeliersFCC-ee Collimation StudiesROUSSY, Campus des CordeliersMAD-X benchmarking and solenoid modelsROUSSY, Campus des CordeliersIR solenoid modelling

JACQUELINE KEINTZEL SUMMARY ACCELERATORS



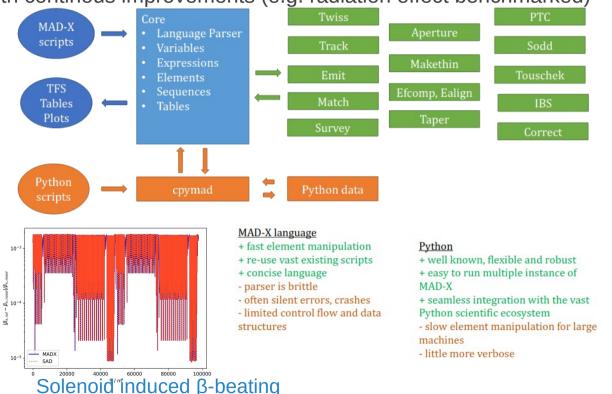

24

Software Framework for the FCC-ee T. Pieloni

• Reliable software required for FCC design; XSUITE: New python framework

CÉRN

MAD-X Progress


R. de Maria

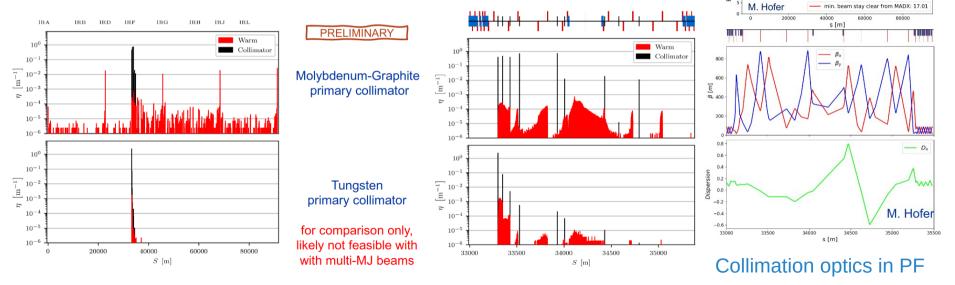
• Code framework since 2002 with continous improvements (e.g. radiation effect benchmarked)

MAD-X is used for all circular accelerators in the CERN complex as well as for linacs.

For FCC, MAD-X should be able to calculated:

- Closed orbit with energy loss with/without tapering (see TWISS, TAPER, CORRECT)
- Undamped lattice functions (TWISS)
- Damping times, equilibrium emittance (EMIT)
- Tracking with energy (without damping, with damping, with quantum excitation
- Build PTC universe and run PTC physics: normal forms, spin (PTC)

FCC WEEK 2022 03 JUN 2022 JACQUELINE KEINTZEL SUMMARY ACCELERATORS


FUTURE

CIRCULAR

A. Abramov **FCC-ee Collimation Studies**

- Stored beam energy in the FCC-ee reaches 20.7 MJ
- Halo (downstream) and betatron (upstream) collimation foreseen in PF

Betatron collimation 182.5 GeV, no radiation or tapering, 5x10⁶ primary positrons, 700 turns

FCC WEEK 2022

03 JUN 2022

JACQUELINE KEINTZEL SUMMARY ACCELERATORS

FUTURE

CIRCULAR

COLLIDER

ttbar

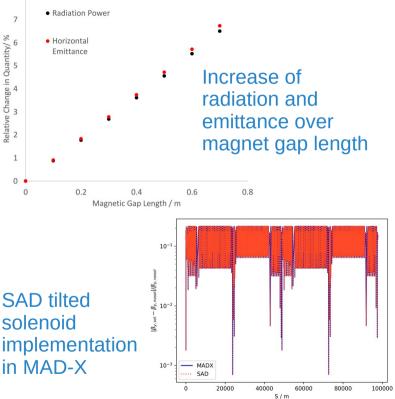
182 5 GeV

0.16 0.14 0.12 × 0.10

^{+01.0} ^{20.0} ^{20.0} ^{20.0} ^{20.0} ^{20.0} ^{20.0} ^{20.0} ^{20.0}

0.00 with

 $\delta_{max} = Aperture / D.$


L. van Riesen-Haupt MAD-X Benchmarking and Solenoid

1

0

- Aim to implement tilted solenoid in MAD-X
- Making the current lattice more realtistic ongoing
 - Split large dipoles into smaller ones
 - No significant orbit or optics change
 - About 3% increase of radiation and emittance

Method	Benefits	Drawbacks
Misalignment of Solenoid Implemented like alignment errors	Very simpleNo need to change lattice file	 Not SAD layout Radiation in solenoid currently not correct
Sliced Solenoid interleaved with thin vertical bends angle = vertical dipole field $\theta = k_0 L_{slice} = k_{sol} L_{slice} \sin(\phi/2)$	Gives correct radiation and emittance calculations	Lattice has to be heavily modifiedNot SAD layout
Tilt through change of coordinate system Rotations and translations at solenoid entrance/exit	 Exact replication of SAD layout Exact agreement with SAD β, α, μ and horizontal dispersion 	 Completely new lattice file from new translator Rotation (currently) causes strange vertical dispersion EMIT does not currently work

FCC WEEK 2022 03 JUN 2022

JACQUELINE KEINTZEL SUMMARY ACCELERATORS

29

FUTURE

CIRCUI AR

IR Solenoid Modeling

Highly complex interaction region design for the FCC

1 1

x [m]

 Overlap of solenoid and final focus guadrupoles Field map of solenoid

0.14

0.12

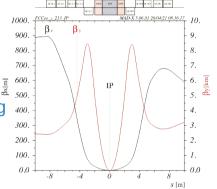
0.08

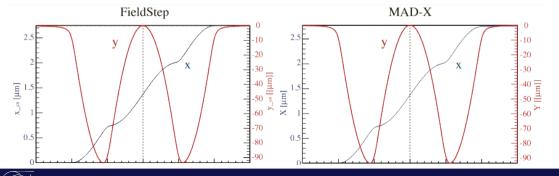
0.06

0.04

0.02

at z = 0.5 m


z [m]


3 m

Given B(x, y, z) the passage through the interaction region can be well modelled on the MAD-X level with orbit correctors (kicker elements, describing the bump generated by the tilted solenoid detailed fringe fields) and thin solenoid slices (coupling + overall focusing)

H. Burkhardt

β-function variation over 7 orders of magnitudes

look in z-direction along the solenoid axis

Thin multipole in MAD-X

Г	$\cos\left(\psi\right)$	0	$\sin\left(\psi\right)$	0	0	0]	[1]	0	0	0	0	0]
	0	$0 \\ \cos{(\psi)}$	0	$\sin\left(\psi ight)$	0	0			$\begin{array}{c} 0 \\ 0 \end{array}$			
	$-\sin\left(\psi\right)$	$\frac{0}{-\sin\left(\psi\right)}$	$\cos\left(\psi ight)$	0	0	0	0	0	1	0	0	0
	0	$-\sin\left(\psi ight)$	0	$\cos\left(\psi ight)$	0	0	0	0	$-\frac{1}{f}$	1	0	0
	0	0	0	0	1	0	0	0	Ő	0	1	0
L	0	0	0	0	0	1	0	0	0	0	0	1

FUTURE

CIRCULAR

COLLIDER

at y = 0

CERN

side view

FCC WEEK 2022

03 JUN 2022

JACQUELINE KEINTZEL SUMMARY ACCELERATORS

FCC-ee Injectors I, Tuesday 31st June

14:00	Status of the high-energy booster	Antoine Chance
	Room 105, CICSU	14:00 - 14:25
	General pre-injector layout and parameter summary	Paolo Craievich
	Room 105, CICSU	14:25 - 14:45
	FCC-ee Linacs design from 200 MeV up to 6 GeV beam energy	Simona Bettoni 🖉
	Room 105, CICSU	14:45 - 15:00
15:00	positron Beam dynamics in linac 1	Mattia Schaer
	Room 105, CICSU	15:00 - 15:15
	RF design of traveling-wave structures for the FCCee injector	Hermann Winrich Pommerenke
	Room 105, CICSU	15:15 - 15:30

FCC WEEK 2022 03 JUN 2022

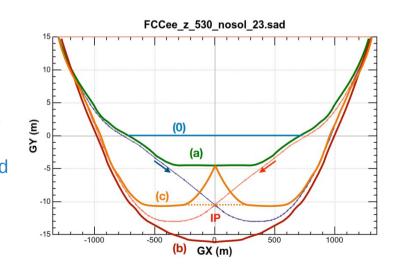
JACQUELINE KEINTZEL SUMMARY ACCELERATORS

Status of the High-Energy Booster

- 60°/60° (Z-, WW-) and 90°/90° (ttbar) optics available
- Dynamic aperture improvements for 90° optics ongoing
- Consequences of 10x smaller inj. emittance to be studied

175

15.0


[^{*juj*}] 12.5

5.0

Å 7.5

Various layouts could be considered for the booster bypassing the detectors at the IPs, implications on booster optics and main rings to be studied carefully

A. Chance

Alternative booster dipoles with two different bending radii; implications on RF to be studied + Faster damping without wigglers

- + Higher field at injection
- Could reduce beam stay clear
- More SR in opposite direction

 θ_1

FCC WEEK 2022 03 JUN 2022 JACQUELINE KEINTZEL SUMMARY ACCELERATORS

w multipole errors

- 15 σ

FUTURE

CIRCULAR

Pre-Injector Layout

- Two different injector layouts studied
- Important requests:

03 JUN 2022

- Bunch-by-bunch intensity from 0 100 %, ٠
- Fluctuation bunch-to-bunch 3 % ٠

P. Craievich Swiss Accelerator Research and Technology SPS or new PBR Option 1 6 GeV pLinac eLinac Common Linac Option 2 6 GeV

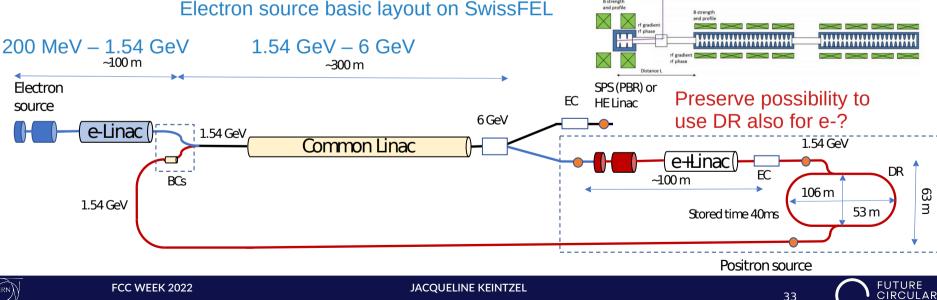
pLinac

B strength

HE Linac

Iongitudinal and transvers heam shane Beam charge Q

20 GeV


20 GeV

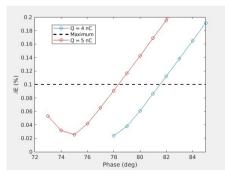
Booster ring

Booster

COLLIDER

ring

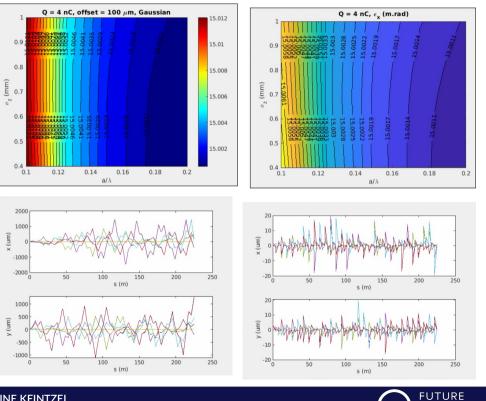
eLinac


Linac

SUMMARY ACCELERATORS

Linac from 200 MeV to 6 GeV

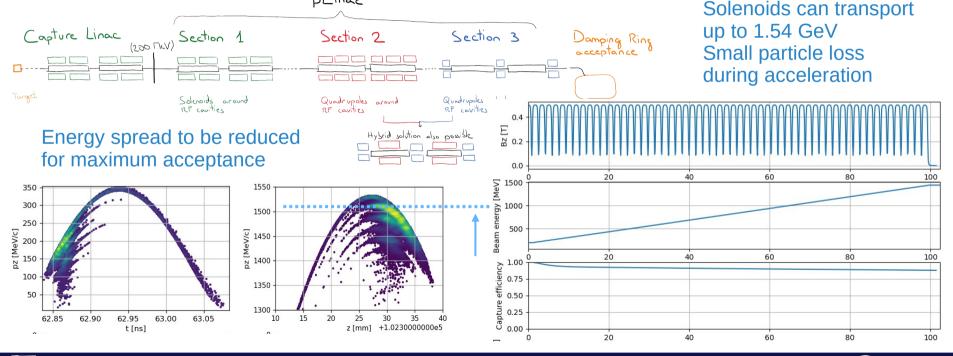
S. Bettoni


- FODO lattice with 90° phase advance
- Studies for determination of working point
- Jitter amplification due to multi-bunch effect
- Aim to decrease energy spread below 0.1%
 - Optimize phase extend
 - Shorter bunch from the gun
 - Bunch compression What happens if bunch intensity

bunch intensity changes between 0.-100 %?

Change of 1 nm will require a phase change of 3° ~6 µm rad emittance after linac

FCC WEEK 2022 03 JUN 2022


JACQUELINE KEINTZEL SUMMARY ACCELERATORS

CIRCULAR

Positron Beam Dynamics in Linac 1 A. Latina

- One of the key challenge huge transverse emittance (10 000 mm mrad)
- Realistic solenoid model ongoing

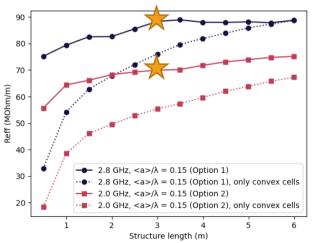
FCC WEEK 2022

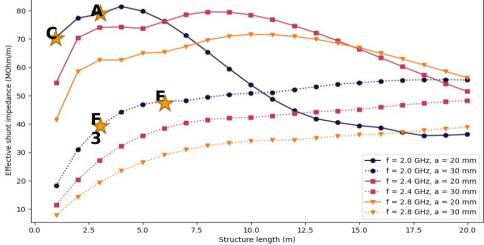
03 JUN 2022

JACQUELINE KEINTZEL SUMMARY ACCELERATORS FUTURE

CIRCULAR

COLLIDER


35


RF Design Traveling Wave Structure

- Convex and reentrant geometries considered, very large parameters phase
- Operated with pulse compressor, e.g. 5 ms puls shortened to 1 ms with larger amplitude

Electron linac, black option (higher frequency, smaller aperture) preferred

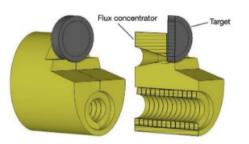
Positron linac, L-band linac, 162° phase advance Optimum structures with low frequencies and large apertures would need to be very long

CERN

FCC WEEK 2022 03 JUN 2022

JACQUELINE KEINTZEL SUMMARY ACCELERATORS

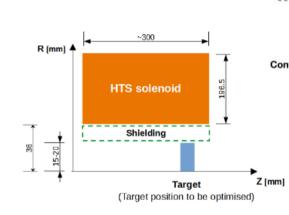
FCC-ee Injectors II, Tuesday 31st June


16:00	Positron capture simulations of the FCC-ee positron source	Mr Yongke Zhao
	Room 105, CICSU	16:00 - 16:15
	Radiation load studies for the FCC-ee positron source with a superconducting matching device	Barbara Humann
	Room 105, CICSU	16:15 - 16:30
	DR Design	Antonio De Santis
	Room 105, CICSU	16:30 - 16:45
	HTS solenoids for the PSI Positron production project in the context of the CHART FCCee injector study	Michal Duda
	Room 105, CICSU	16:45 - 17:00
17:00	Transfer lines for the FCC-ee injector complex Rebecca I	ouise Ramjiawan.
	Room 105, CICSU	17:00 - 17:15
	The PSI Positron Production Project	Nicolas Vallis
	Room 105, CICSU	17:15 - 17:30

Positron Capture Simulations

- Two possible target schemes
- Afterwards either FC or HTS

Flux Concentrator (FC) designed by P. Martyshkin (BINP)

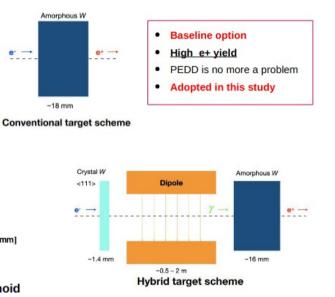

Compared with HTS solenoid:

- Low peak field (5–7 T, <u>~1.5–3 T at target exit</u>)
- Small entrance aperture (Φ = 8–16 mm)
- Fixed target position (2–5 mm upstream)
- Therefore, low e+ yield

Yield

FCC WEEK 2022 03 JUN 2022

High-Temperature Superconducting (HTS) solenoid designed by J. Kosse et al. (PSI)


Compared with FC:

- High peak field (~15 T, <u>~12 T at target exit</u>)
- Large aperture (Φ = 40 mm)
- · Flexible target position (can be placed inside the bore)
- Therefore, high e+ yield

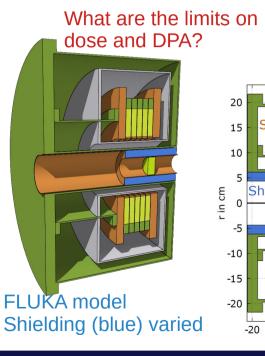
Yield

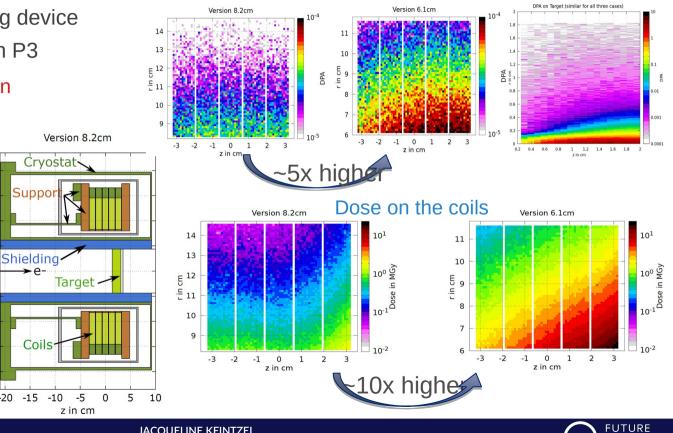
JACQUELINE KEINTZEL SUMMARY ACCELERATORS

Y. Zhao

- Alternative option, with <u>potential smaller PEDD</u> and safer radiation and thermal load, for which the study is still in progress
- Low e+ yield due to large beam size arriving at the amorphous target

38


Therefore, not adopted in this study


FUTURE

CIRCULAR

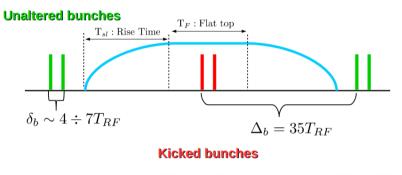
B. Humann **Radiation Load Studies for Positron Source Displacement per Atom**

 Superconducting matching device design based on design in P3

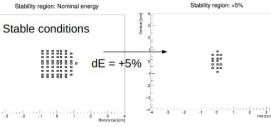
39

CIRCULAR

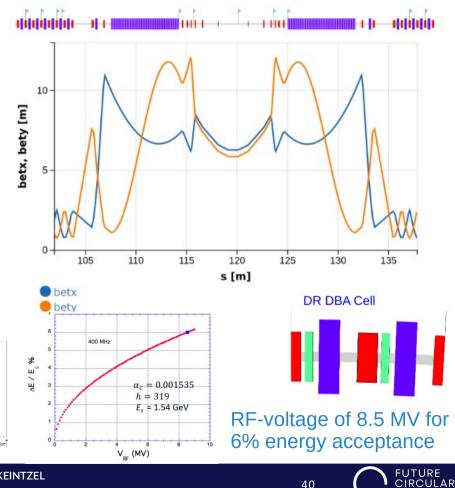
COLLIDER




FCC WEEK 2022 03 JUN 2022


-15

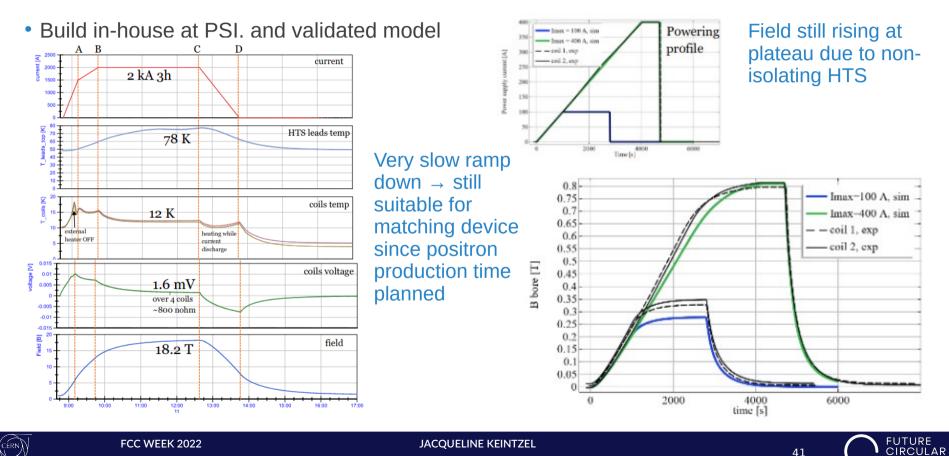
Damping Ring Design


- About 5% energy acceptance required
- At least 9 bunch pairs injected in damping ring
- Maximum 35 bucket separation between train

A. de Santis

COLLIDER

CERN

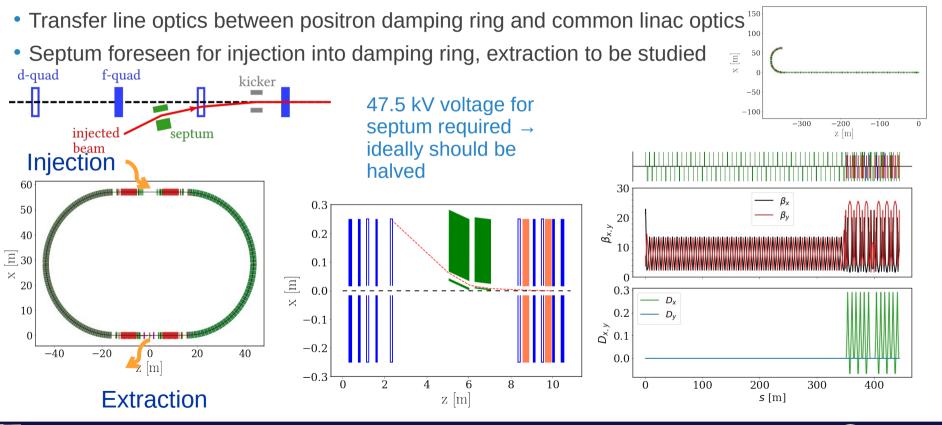

FCC WEEK 2022 03 JUN 2022

M. Duda

41

COLLIDER

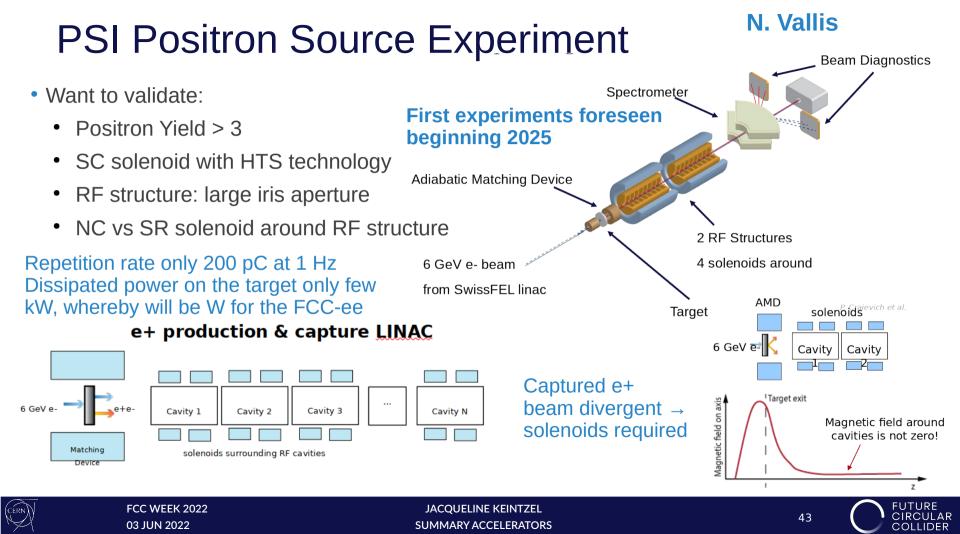
HTS Solenoids for P3



FCC WEEK 2022

03 JUN 2022

R. Ramjiawan Transfer Lines for FCC-ee Injectors



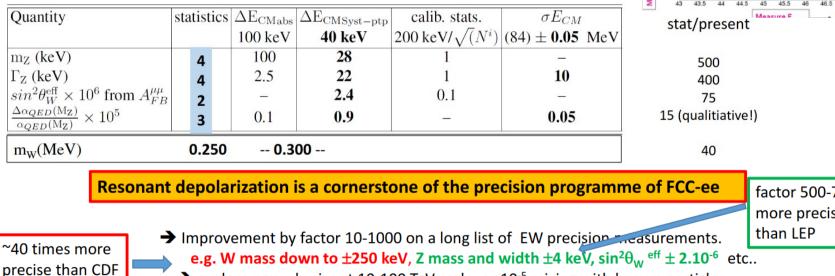
FCC WEEK 2022 03 JUN 2022

JACQUELINE KEINTZEL SUMMARY ACCELERATORS FUTURE

CIRCULAR

FCC-ee Accelerator III, Wednesday 1st June

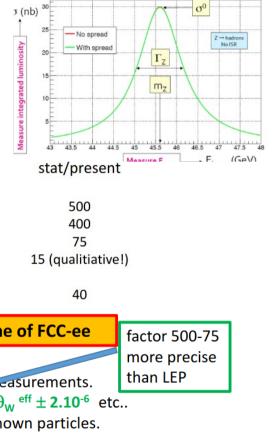
09:00	FCC-ee EPOL The center-of-mass energy calibration and polarization working group	Alain Blondel
	Bilsky PASQUIER, Campus des Cordeliers	09:00 - 09:20
	Center-of-mass energy and boosts for various RF-configurations	Jacqueline Keintzel
	Bilsky PASQUIER, Campus des Cordeliers	09:20 - 09:40
	Polarimeter and wigglers integration status	Katsunobu Oide
	Bilsky PASQUIER, Campus des Cordeliers	09:40 - 10:00
10:00	Laser system for Compton polarimeter	Aurelien Martens
	Bilsky PASQUIER, Campus des Cordeliers	10:00 - 10:20


FCC WEEK 2022 03 JUN 2022

The EPOL Working Group

- Energy Polarization, Calibration and Monochromatization
- FCC-ee aims to decrease present statistical errors drastically

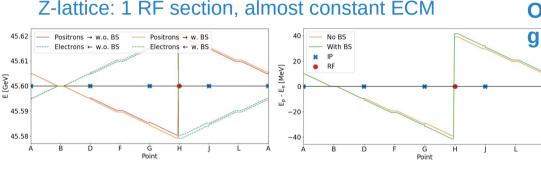
Table for 2 IPs: $\sqrt{1.7}$ smaller for 4 IPs


 \rightarrow explore new physics at 10-100 TeV scale, or 10⁻⁵ mixing with known particles.

FCC WEEK 2022 03 JUN 2022

JACQUELINE KEINTZEL SUMMARY ACCELERATORS

A. Blondel


45

FUTURE

CIRCULAR

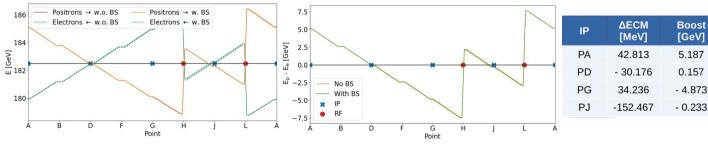
ECM and Boosts for FCC-ee

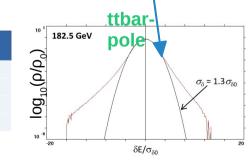
• ECM and boosts depend on RF sections, beamstrahlung, etc.

One 8 h shift will give 5 keV precision

IP	∆ECM [keV]	Boost [MeV]
PA	- 379.203	96.402
PD	- 384.749	- 91.447
PG	40.753	- 279.299
PJ	57.530	284.254

 Architecture
 Architecture
 Architecture
 Architecture


 Notestient
 Architecture
 Architecture
 Architecture


 Architecture
 Architecture
 Architecture
 Architecture

J. Keintzel, D. Shatilov

Beam energy spectrum with and without beamstrahlung

ttbar-lattice: 2 RF sections, almost constant ECM

FUTURE

CIRCULAR

COLLIDER

FCC WEEK 2022

03 JUN 2022

JACQUELINE KEINTZEL SUMMARY ACCELERATORS

46

Polarimeter and Wigglers Status

K. Oide, M. Hofer

39.3

0.702

0.426

0.040

4.5

0.0370

45.6

48 / 24

-0.1167 / 0.6

1.29 / 0.43

54.8

0.563

0.305

0.137

15.7

0.0359

22125

FUTURE

CIRCULAR

COLLIDER

[GeV

[T]

[m]

[MeV]

[nm]

[pm]

[%]

[mm]

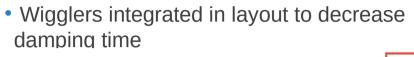
Beam energy

Wiggler field

Wiggler length

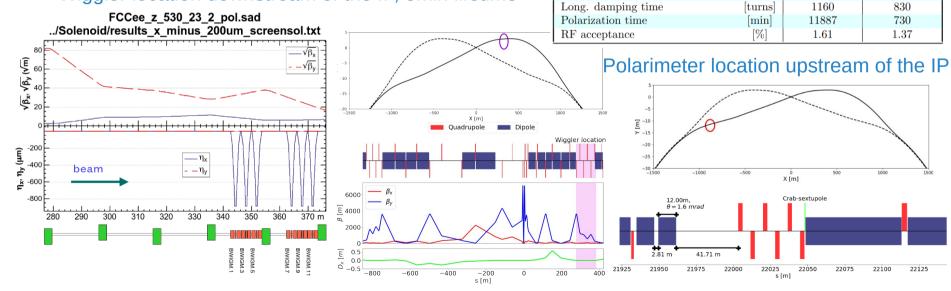
Energy loss / turn

Horizontal emittance ε_{r}


Vertical emittance ε_y

Energy spread (SR) σ_{δ}

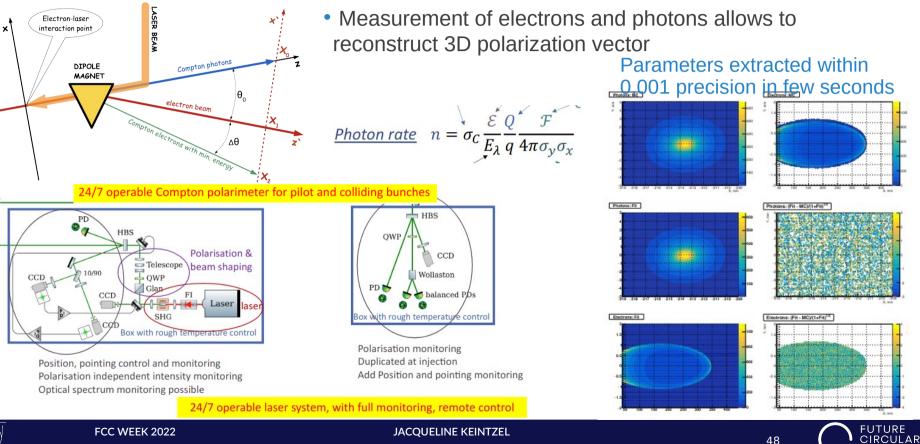
Bunch length (SR) σ_z


Synchrotron tune $4Q_{\circ}$

Wiggler poles/ring (long/short)

Energy spread (SR/BS) σ_{δ}	[%]	0.038 /	
Bunch length (SR/BS) σ_z	[mm]	4.38 /	15.4

Wiggler location downstream of the IP, 5min lifetime



FCC WEEK 2022

03 JUN 2022

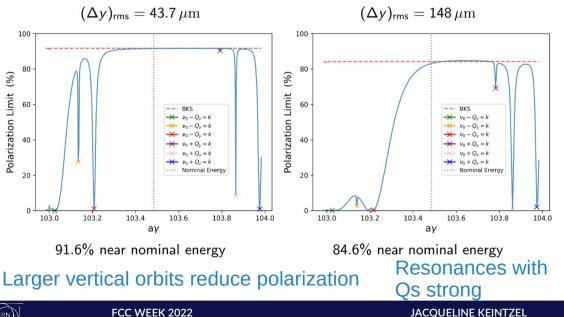
A. Martens. Laser System for Compton Polarimeter N. Muchnoi

03 JUN 2022

SUMMARY ACCELERATORS

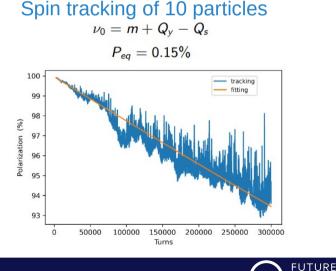
FCC-ee Accelerator VI, Thursday 2nd June

09:00	Simulations of the Spin Polarization for the Future Circular Collider e+e- using Bmad	Yi Wu
	FARABOEUF, Campus des Cordeliers	09:00 - 09:20
	Study of the depolarization process, possible biases	Ivan Koop
	FARABOEUF, Campus des Cordeliers	09:20 - 09:40
	Effect of misalignments, collision offsets, beamstrahlung	Alain Blondel et al.
	FARABOEUF, Campus des Cordeliers	09:40 - 10:00
10:00	Progress on monochromatization	Angeles Faus-Golfe et al.
	FARABOEUF, Campus des Cordeliers	10:00 - 10:25


Spin Polarization Using Bmad

• Transversely polarized pilot bunches foreseen in FCC-ee for energy calibration

SUMMARY ACCELERATORS


- Lepton beams polarize naturally over time
- Depolarization with errors $\tau_{dep}^{-1} = \frac{5\sqrt{3}}{8} \frac{r_e \gamma^5 \hbar}{m_e} \frac{1}{C} \oint ds \left\langle \frac{11}{18} (\frac{\partial \hat{n}}{\partial \delta})^2}{|\rho(s)|^3} \right\rangle$

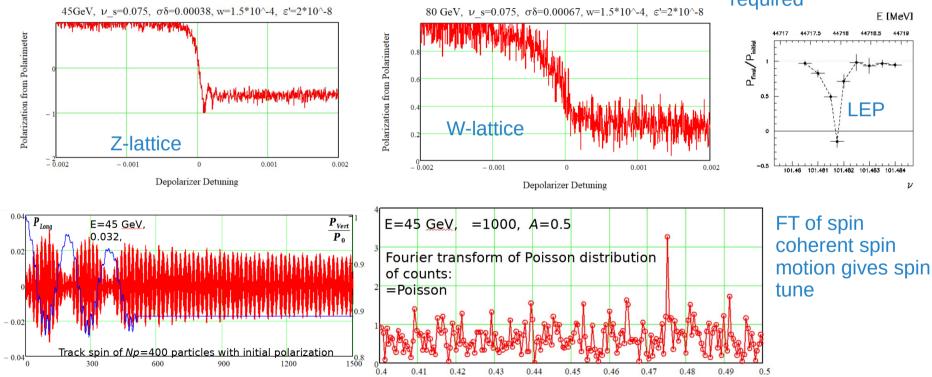
03 JUN 2022

$P_{ST} = \frac{W_{\uparrow\downarrow} - W_{\downarrow\uparrow}}{W_{\uparrow\downarrow} + W_{\downarrow\uparrow}} \simeq 92.38\% \text{ and } \tau_{ST}^{-1} = \frac{5\sqrt{3}}{8} \frac{r_e \gamma^5 \hbar}{m_e |\rho|^3}$ Resonances between betatron tunes, synchrotron tune and spin tune $\nu_0 = m + m_x Q_x + m_y Q_y + m_z Q_z$

Y. Wu

50

CIRCULAR

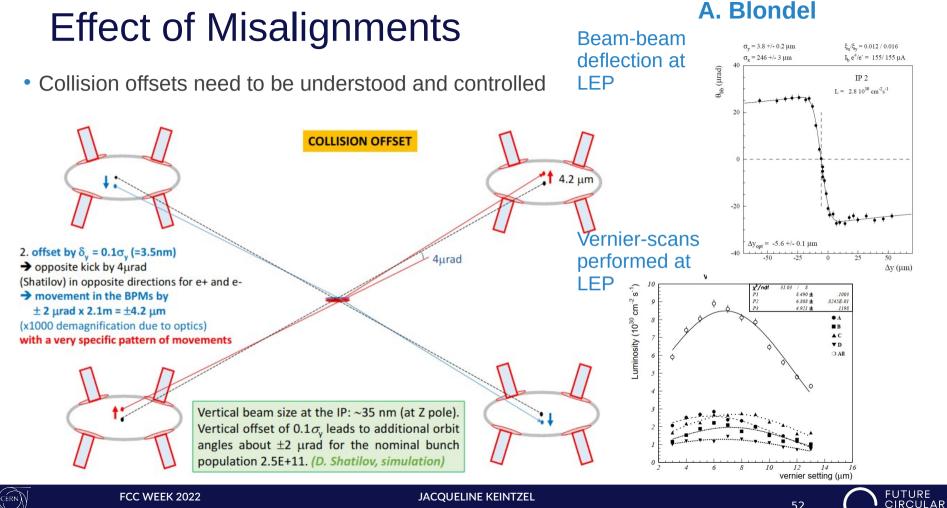


Depolarization Process

Resonant depolarization allows to determine spin tune and thus energy

I. Koop

At W Qs too large, stepwise depolariozation required



FCC WEEK 2022 03 JUN 2022 JACQUELINE KEINTZEL SUMMARY ACCELERATORS

FUTURE CIRCULAR

03 JUN 2022

SUMMARY ACCELERATORS

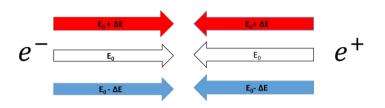
52

Monochromatization

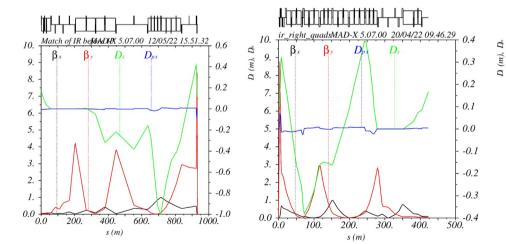
 Helps reducing the ECM spread from 50 to 5 keV Transverse monochromatization scheme most promising → introduce dispersion → luminosity loss, chromaticity, etc.

The monochromatization factor

$$\lambda = (1 + \sigma_{\varepsilon}^{2} (\frac{D_{x}^{*2}}{\sigma_{x\beta}^{*2}} + \frac{D_{y}^{*2}}{\sigma_{y\beta}^{*2}}))^{1/2}$$


The monochromatization factor for FCC-ee($D_y^* = 0$)

$$\lambda = \sqrt{1 + \frac{D_x^{*2} \sigma_\varepsilon^2}{\epsilon_x \beta_x^*}}$$


The needed dispersion value at IP estimated from [5 $D_x^*(e^+) = -D_x^*(e^-) = -0.105m$

H. Jiang

Same dispersion at the IP

IR optics with monochromatization scheme

FCC WEEK 2022 03 JUN 2022

JACQUELINE KEINTZEL SUMMARY ACCELERATORS

3)]

);e:0[*]

FUTURE CIRCULAR COLUDER

FCC-ee Accelerator VII, Thursday 2nd June

11:00	MDI overview	Manuela Boscolo
	FARABOEUF, Campus des Cordeliers	11:00 - 11:20
	Luminosity calorimeter	Mogens Dam
	FARABOEUF, Campus des Cordeliers	11:20 - 11:40
	IR chamber & Calculations	Francesco Fransesini
	FARABOEUF, Campus des Cordeliers	11:40 - 12:00
12:00	Modelling process for vibrations estimations	Stanislas Grabon
	FARABOEUF, Campus des Cordeliers	12:00 - 12:15
	Machine Detector Interface Alignment System Update and challenges	Leonard Watrelot
	FARABOEUF, Campus des Cordeliers	12:15 - 12:30

FCC WEEK 2022 03 JUN 2022

JACQUELINE KEINTZEL SUMMARY ACCELERATORS

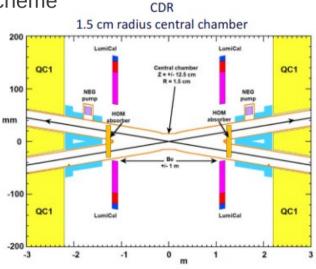
54

FCC WEEK 2022 03 JUN 2022

JACQUELINE KEINTZEL SUMMARY ACCELERATORS

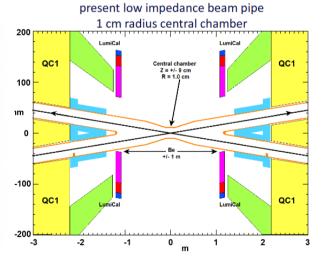
FUTURE CIRCULAR COLLIDER

MDI Overview


- Numerous requirements
 - Common IR for all energies
 - 2 T detector solenoid field
 - Solenoid compensation scheme
 - SR control
 - Lumimeter

. .

- 100 mrad physics cone
- Background suppression
- Radiation shielding


Proposal for mock-up of the IR

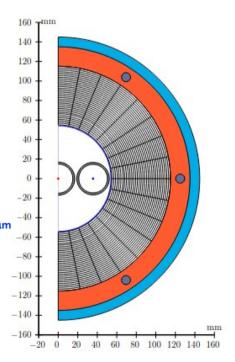
- step1 . Central IP vacuum chamber
 - test the cooling system and the vacuum system
 - AlBeMet162 steel transition
 - study the shape of the transition, EBW process
 - Bellow
 - vacuum and thermal tests
 - Welding
 - EBW for elliptical geometry

M. Boscolo

- step2
- Trapezoidal vacuum chamber with remote vacuum connection
- QC1
- cryostat
- beam pipe and quadrupole and cryostat support
- vibration and alignment sensors

MDI design; Blue: shielding

FCC WEEK 2022 03 JUN 2022


Luminosity Calorimeter

Standard lumi process is small angle elastic e + e - (Bhabha) scattering

Goal: absolute normalization 10⁻⁴ (Best OPAL at LEP 3.4x10⁻⁴) В -Narrow -Wide Could or should some detectors be built physics? 2Z• Geometric tolerance on (system of two) LumiCals: \Box Inner radius: $\delta R_{min} = \pm 1.5 \mu m$ LHCal TPC \Box Outer radius: $\delta R_{min} = \pm 3.3 \mu m$ \Box Longitudinal distance between each LumiCal and nominal IP: $\delta Z = \pm 55 \mu m$ LumiCal few tenths of a mm Transverse: Longitudinal: few mm

asymmetrically to follow the

- Geometric tolerance of IP position w.r.t. LumiCal system:

M. Dam

FCC WEEK 2022 03 JUN 2022

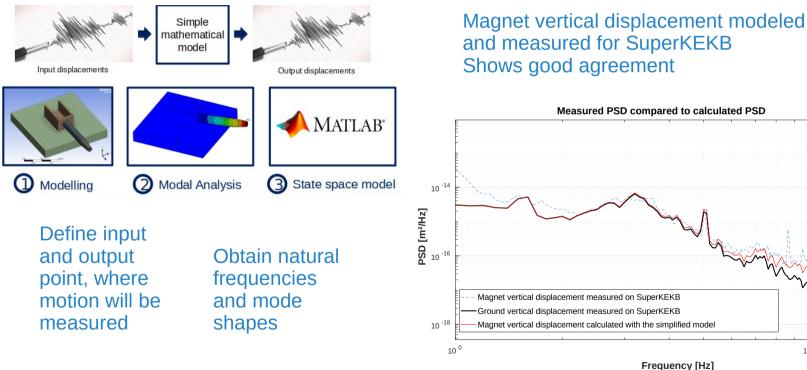
JACQUELINE KEINTZEL SUMMARY ACCELERATORS

57

FUTURE CIRCULAR

F. Fransesini **IR Chamber and Calculations** Main assembly updated and thermal study performed First results on thermal study E: Cooling in copper all bodies Type: Temperature Unit: °C Time: 1 s 26/05/2022 10:35 Trapezoidal chamber Copper 60,309 Max pipes 55.608 EBW¹ 50.907 Assembly sequence 46,206 41.505 36,804 32.103 Flange 27.402 Shell 1 (explosion bonding Shell 2 transition) Thick copper deposition cooling channels Transition to the Water flow central chamber 43,153 41,752 40,351 38,95 37,548 36,147 34,746 33,345 31,944 30,543 29,142 27,741 26,339 24,93 41.051 39.65 38.249 36.848 35.447 34.046 32.645 31.243 29.842 28.441 27.04 25.639 43 854 Max 22.83 E: Cooling in copper 1=electron T int central Type: Temperature beam welding Unit: °C Time: 1 s 26/05/2022 11:08 Z

FCC WEEK 2022 03 JUN 2022 JACQUELINE KEINTZEL SUMMARY ACCELERATORS


58

FUTURE CIRCULAR COLLIDER

Modeling for Vibration Estimates

S. Grabon

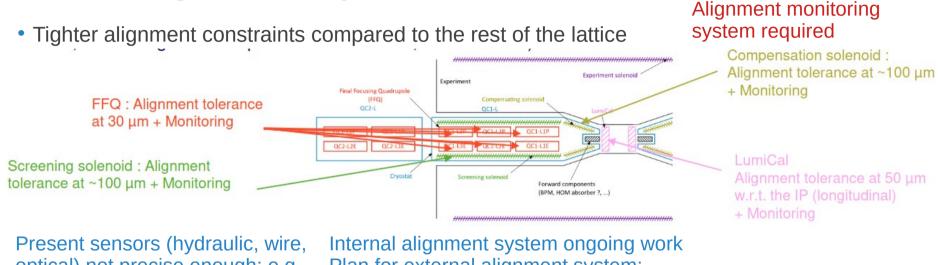
• Goal is to understand, model and predict dymanic behaviour of magnets

CERN

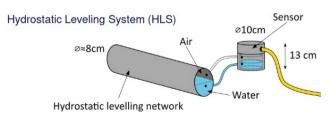
FCC WEEK 2022 03 JUN 2022

JACQUELINE KEINTZEL SUMMARY ACCELERATORS

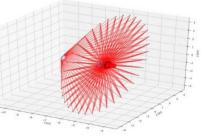
59

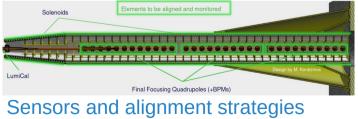

 10^{1}

FUTURE CIRCULAR COLLIDER


Winn Will.

MDI Alignment System


L. Watrelot



optical) not precise enough; e.g. HL-LHC not directly applicable (?)

Plan for external alignment system:

presently developed for the FCC-ee

FCC WEEK 2022 03 JUN 2022

JACQUELINE KEINTZEL SUMMARY ACCELERATORS

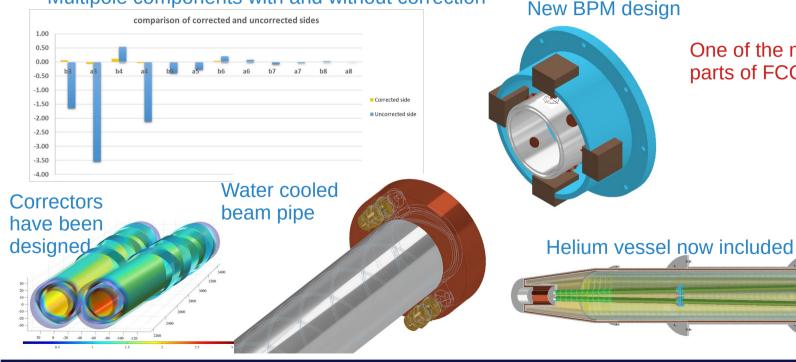
60

FUTURE

CIRCULAR

FCC-ee Accelerator VIII, Thursday 2nd June

14:00	IR Magnet concepts	m Koratzinos
	FARABOEUF, Campus des Cordeliers	14:00 - 14:20
	IR Magnet review	John Seeman
	FARABOEUF, Campus des Cordeliers	14:20 - 14:35
	Machine induced backgrounds in the FCC-ee MDI region and Beamstrahlung radiation	Andrea Ciarma
	FARABOEUF, Campus des Cordeliers	14:35 - 14:55
15:00	Synchrotron radiation background studies	Kevin Daniel Joel Andre
	FARABOEUF, Campus des Cordeliers	14:55 - 15:10
	Challenges for instrumented beamstrahlung	Marco Calviani
	FARABOEUF, Campus des Cordeliers	15:10 - 15:30



FCC WEEK 2022 03 JUN 2022

IR Magnet Concepts

Detailed studies on final focus quadrupoles performed

Multipole components with and without correction

FCC WEEK 2022 03 JUN 2022

JACQUELINE KEINTZEL SUMMARY ACCELERATORS

M. Koratzinos

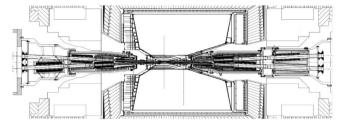
One of the most crucial parts of FCC-ee

Helium vessel now included in design

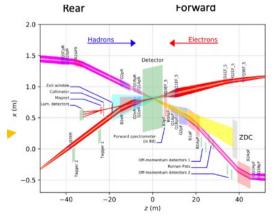
62

FUTURE

CIRCULAR


IR Magnet Review

- IR review took place on 6th April 2022
- Review general overall highlights:


FCC WEEK 2022

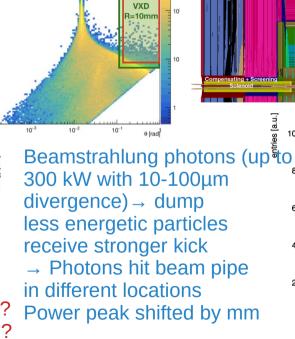
03 JUN 2022

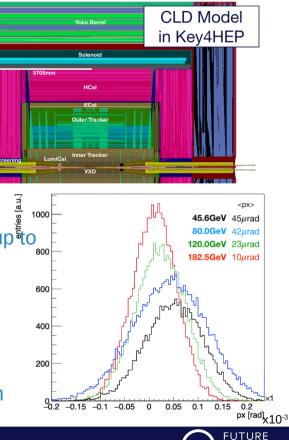
Use experience from e.g. EIC and **SuperKEKB**

The cone angle between accelerator and detector of 100 mrad should be optimized given all the constraints on both sides.

- All the mechanical, electrical, and field tolerances should be studied as ٠ an integrated group and loosened as much as is possible.
- All the various magnetic fields and SC correctors in the cryostat need to ٠ be studied together along with the main coils for field quality, compatibility, and constructability.
- The mechanical and heat designs of the cryostats should be taken to the next level.

JACOUELINE KEINTZEL SUMMARY ACCELERATORS


63


A. Ciarma

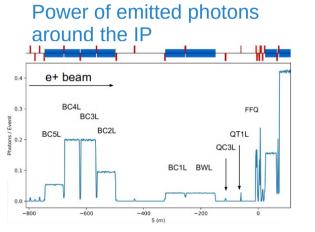
Backgrounds and Beamstrahlung

 Focused on vertex detector and inner tracker Generated photons increase R=15mr for higher energy VXD About 60 particles lost per beam crossing per beam 10-Detailed studies ongoing to 10 dertermine impact on QC1 10-2 10-1 A Irad 1000 Preliminary Beamstrahlung photons (up to 2000 Deposited Energy [a.u.] 300 kW with 10-100µm divergence) \rightarrow dump 60 600 less energetic particles -1000 receive stronger kick 400 -2000 \rightarrow Photons hit beam pipe 4000 -4000 -2000 6000 1000 2000 3000 x [mm]

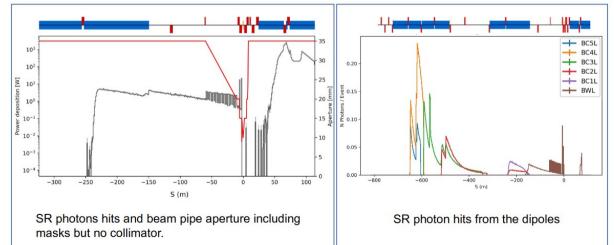
How much shielding do we need and where? How are the losses for a new injected beam?

CERN

FCC WEEK 2022 03 JUN 2022


JACQUELINE KEINTZEL SUMMARY ACCELERATORS

64


CIRCULAR

Synchrotron Radiation Background K. Andre

• Synchrotron radiation photons generated simulated using BDSim and compared with previous results from MDISim

SR masks for shielding required, photons generated from different dipoles hit at different location Where do we need the masks and collimators? Which dimensions should they have?

JACQUELINE KEINTZEL SUMMARY ACCELERATORS FUTURE

CIRCULAR

Beam Dumps for Beamstrahlung

M. Calviani

• Various absorbers could be considered (graphite, water, liquid metal) and integration studied

Do we need a window and what is its impact on the vacuum design?

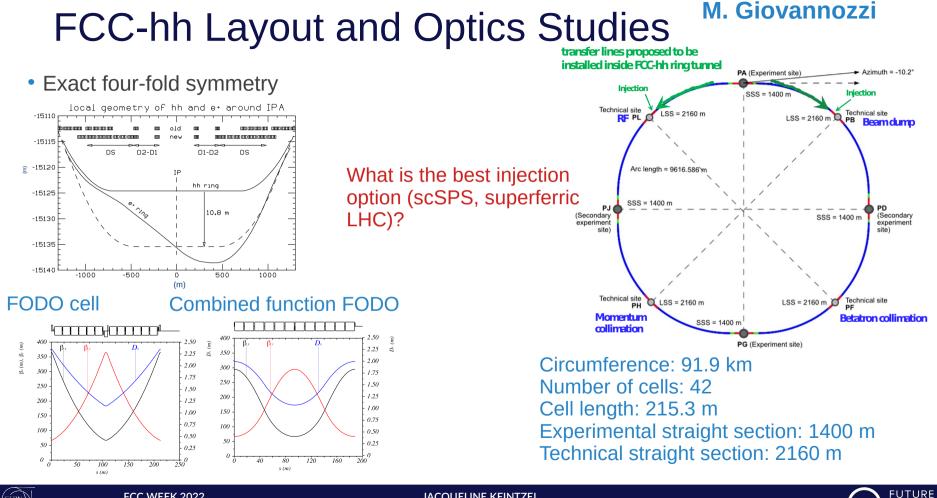
FCC WEEK 2022 03 JUN 2022 JACQUELINE KEINTZEL SUMMARY ACCELERATORS

66

FUTURE

CIRCULAR

FCC-hh, Wednesday 1st June


09:00	FCC-hh layout and optics studies	Massimo Giovannozzi
	ROUSSY, Campus des Cordeliers	09:00 - 09:25
	FCC-hh collimation	Dr Roderik Bruce
	ROUSSY, Campus des Cordeliers	09:25 - 09:45
	A Hybrid REBaCuO-Cu Coating for the FCC-hh Beam Screen	Guilherme Telles
10:00	ROUSSY, Campus des Cordeliers	09:45 - 10:05
	Injectors, injection, extraction, transfer lines	Wolfgang Bartmann
	ROUSSY, Campus des Cordeliers	10:05 - 10:25

FCC WEEK 2022 03 JUN 2022

FCC WEEK 2022 03 JUN 2022 JACQUELINE KEINTZEL SUMMARY ACCELERATORS

69

CIRCULAR

FCC-hh Collimation

New halo collimation optics and lattice, foreseen in PF

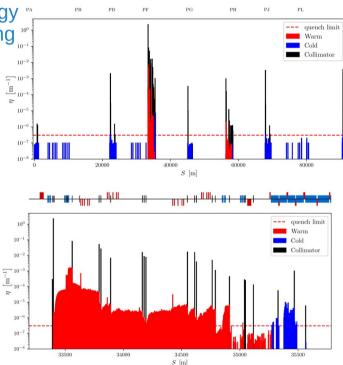
─╫──_{╢╎╢}┼╫^{╢║}┼╫┼**╢**_┙┼

34500

35000

35500

LHC: 362 MJ - kinetic energy of TGV train cruising at 155 km/h


FCC-hh: 8.3 GJ – kinetic energy of Airbus A380 (empty) cruising

AIR FRANCE

$\begin{array}{c} \overset{\circ}{\underset{1}{\sim}} & \text{Smallest} & \overset{\circ}{\underset{1}{\sim}} \\ \text{collimator half gap} & \overset{\circ}{\underset{1}{\sim}} \\ \text{(vertical primary)} & \overset{\circ}{\underset{1}{\equiv}} \overset{\circ}{\underset{1}{\sim}} \\ \overset{\circ}{\underset{1}{\sim}} & \text{around 0.8 mm} & \overset{\circ}{\underset{1}{\sim}} \\ \overset{\circ}{\underset{1}{\sim}} & \text{(cf ~1mm in LHC)} & \overset{\circ}{\underset{1}{\sim}} \end{array}$

R. Bruce

Horizontal halo collimation Beam 1 50 TeV

1400

1200

600

1000 [<u>H</u>] 800 · Hor coll

FCC WEEK 2022

34000

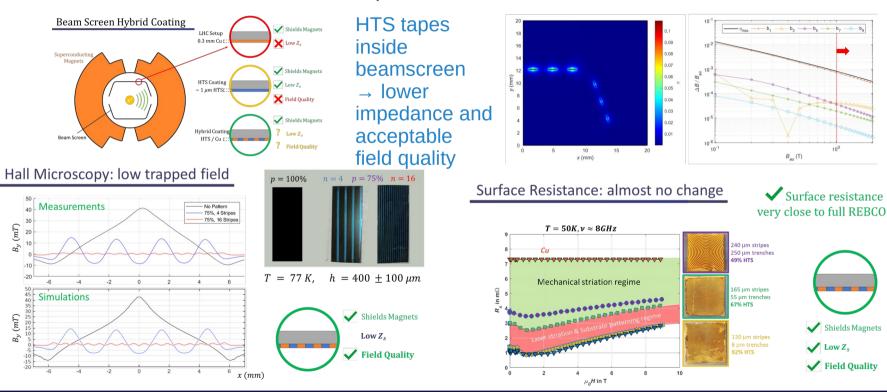
s [m]

03 JUN 2022

33500

JACQUELINE KEINTZEL SUMMARY ACCELERATORS

70


FUTURE

CIRCULAR

Hybrid HTS-Cu Coating for Beam Screen G. Telles

One simulation: n = 6; p = 50%

• New studies for FCC-hh beam screen presented

FCC WEEK 2022 03 JUN 2022 JACQUELINE KEINTZEL SUMMARY ACCELERATORS FUTURE

CIRCULAR

Injectors, Injection, Extraction and Transfer Lines

- For FCC-hh injection and extraction combined in the same straight section Main optics constraint of kicker-absorber Optics and beam enveloped for
- Injector options: $= 90^{\circ}$ phase
 - Most critical is injection failure impacting • scSPS: 1.3 TeV 2500
 - (Superferric) LHC: 1.3 3.3 TeV
- Synergy between hadron and lepton transfer line If SPS serves as hadron injector – more obvious synergy between hadron and lepton lines

For the LHC option should study possibility of extracting both beams in either P1 or P8 & envisage re-use of TI8

With updated 8IP layout need to direct injection lines into the arc tunnel to avoid excessive tunnel lengths

 betx [m] bety [m] 2000 1500 1000 500 0.04 0.02 0.00 -0.02 Ver envelope (15sig) [m] -0.04/er envelope (6sig) [m] 300 600 1800 2100 2400 2700 1200 1500 Longitudinal position [m]

injection and extraction for FCC-hh

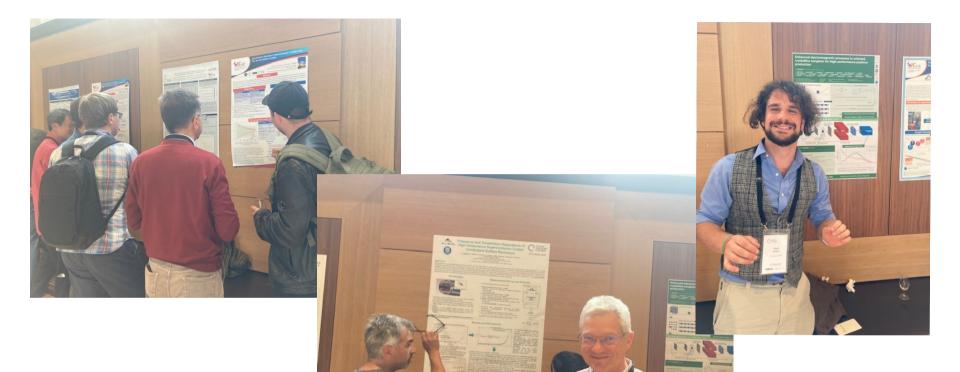
FCC WEEK 2022 03 JUN 2022

JACQUELINE KEINTZEL SUMMARY ACCELERATORS

Poster Session, Thursday 2nd June

Measuring \$Z\$ boson couplings to bottom quarks at FCCee	Giovanni Guerrieri 🥝
Réfectoire des Cordeliers	17:50 - 17:51
Strange jet tagging at the FCC-ee using a transformer NN architecture and K short recon	struction Eduardo Ploerer 🥝
Réfectoire des Cordeliers	17:51 - 17:52
Incorporation of LCFIPIus vertexing module in FCCAnalyses	Kunal Gautam 🥝
Réfectoire des Cordeliers	17:53 - 17:54
Presentation of the Grainite calorimeter project	Jacques Lefrancois
Réfectoire des Cordeliers	17:54 - 17:55
Higgs Self Couplings Measurements at Future proton-proton Colliders	Claudio Caputo
Réfectoire des Cordeliers	17:55 - 17:56
Performance of different FCC-ee vertex detector geometries and benefit of extended for	vard coverage Armin IIg 🥝
Réfectoire des Cordeliers	17:56 - 17:57
Monte Carlo KKMCee 5.00 for lepton and quark pair production in lepton colliders	Prof. Stanislaw Jadach
Réfectoire des Cordeliers	17:57 - 17:58
The high-energy QCD dynamics from Higgs-plus-jet correlations at FCC collision energies Dr Francesco Giovanni Celiberto	es 🦉
Constraining 3-3-1 Models at the LHC and Future Hadron Colliders	Ms Yoxara Sánchez Villamizar 🥝
	17:59 - 18:00
Technological and operational challenges of FCC cryogenic distribution system.	Prof. Maciej Chorowski
Réfectoire des Cordeliers	18:00 - 18:02
	10.00 - 10.02

Nikki Tagdulang et al. Optics measurement prospects for the FCC-ee Jacqueline Keintzel Réfectoire des Cordeliers 18:08 - 18:10 Spin precession as a method for beam energy measurement Victor Caudaa Réfectoire des Cordeliers 18:10 - 18:11 Development and Optimization of Plasma Cleaning Process for QWR type Cavities Oleksandr HRYHORENKO et al. Réfectoire des Cordeliers 18:12 - 18:12 SR radiation issues in FCC-ee Guillaume Simon Réfectoire des Cordeliers 18:14 - 18:11 Beam-Beam effects at FCC-ee Nikos Nikolopoulos Réfectoire des Cordeliers 18:16 - 18:11 First optics design for a transverse monochromatic scheme for the direct s-channel Higgs production at FCC-ee collide Angeles Faus-Golfe Development and Optimization of Plasma Cleaning Process for QWR type Cavities Oleksandr HRYHORENKO	Enhanced electromagnetic processes in oriented crystalline tungsten for high-perfor Mattia Soldani	mance positron production
Réfectoire des Cordeliers 18:08 - 18:14 Spin precession as a method for beam energy measurment Victor Caudal Réfectoire des Cordeliers 18:10 - 18:12 Development and Optimization of Plasma Cleaning Process for QWR type Cavities Oleksandr HRYHORENKO et al. Réfectoire des Cordeliers 18:12 - 18:12 SR radiation issues in FCC-ee Guillaume Simon Réfectoire des Cordeliers 18:14 - 18:11 Beam-Beam effects at FCC-ee Nikos Nikolopoulos Réfectoire des Cordeliers 18:16 - 18:11 First optics design for a transverse monochromatic scheme for the direct s-channel Higgs production at FCC-ee collide Angeles Faus-Golfe Development and Optimization of Plasma Cleaning Process for QWR type Cavities Oleksandr HRYHORENCO		urface Resistance
Spin precession as a method for beam energy measurment Victor Caudai Réfectoire des Cordeliers 18:10 - 18:11 Development and Optimization of Plasma Cleaning Process for QWR type Cavities Oleksandr HRYHORENKO et al. Réfectoire des Cordeliers 18:12 - 18:11 SR radiation issues in FCC-ee Guillaume Simon Réfectoire des Cordeliers 18:14 - 18:11 Beam-Beam effects at FCC-ee Nikos Nikolopoulos Réfectoire des Cordeliers 18:16 - 18:11 First optics design for a transverse monochromatic scheme for the direct s-channel Higgs production at FCC-ee collide Angeles Faus-Golfe Development and Optimization of Plasma Cleaning Process for QWR type Cavities Oleksandr HRYHORENKO	Optics measurement prospects for the FCC-ee	Jacqueline Keintzel
Réfectoire des Cordeliers 18:10 - 18:11 Development and Optimization of Plasma Cleaning Process for QWR type Cavities Oleksandr HRYHORENKO et al. Réfectoire des Cordeliers 18:12 - 18:11 SR radiation issues in FCC-ee Guillaume Simon Réfectoire des Cordeliers 18:14 - 18:11 Beam-Beam effects at FCC-ee Nikos Nikolopoulos Réfectoire des Cordeliers 18:16 - 18:11 First optics design for a transverse monochromatic scheme for the direct s-channel Higgs production at FCC-ee collide Angeles Faus-Golfe Oleksandr HRYHORENKO	Réfectoire des Cordeliers	18:08 - 18:10
Development and Optimization of Plasma Cleaning Process for QWR type Cavities Oleksandr HRYHORENKO et al. Réfectoire des Cordeliers 18:12 - 18:1/ SR radiation issues in FCC-ee Guillaume Simon Réfectoire des Cordeliers 18:14 - 18:1/ Beam-Beam effects at FCC-ee Nikos Nikolopoulos Réfectoire des Cordeliers 18:16 - 18:1/ First optics design for a transverse monochromatic scheme for the direct s-channel Higgs production at FCC-ee collide Angeles Faus-Golfe Oleksandr HRYHORENKO	Spin precession as a method for beam energy measurment	Victor Caudan
Réfectoire des Cordeliers 18:12 - 18:12 SR radiation issues in FCC-ee Guillaume Simon Réfectoire des Cordeliers 18:14 - 18:12 Beam-Beam effects at FCC-ee Nikos Nikolopoulos Réfectoire des Cordeliers 18:16 - 18:11 Beam-Beam effects des Cordeliers 18:16 - 18:11 First optics design for a transverse monochromatic scheme for the direct s-channel Higgs production at FCC-ee collide Angeles Faus-Golfe Development and Optimization of Plasma Cleaning Process for QWR type Cavities Oleksandr HRYHORENKO	Réfectoire des Cordeliers	18:10 - 18:12
SR radiation issues in FCC-ee Guillaume Simon Réfectoire des Cordeliers 18:14 - 18:11 Beam-Beam effects at FCC-ee Nikos Nikolopoulos Réfectoire des Cordeliers 18:16 - 18:11 First optics design for a transverse monochromatic scheme for the direct s-channel Higgs production at FCC-ee collide Angeles Faus-Golfe Development and Optimization of Plasma Cleaning Process for QWR type Cavities Oleksandr HRYHORENKO	Development and Optimization of Plasma Cleaning Process for QWR type Cavities	Oleksandr HRYHORENKO et al.
Réfectoire des Cordeliers 18:14 - 18:11 Beam-Beam effects at FCC-ee Nikos Nikolopoulos Réfectoire des Cordeliers 18:16 - 18:11 First optics design for a transverse monochromatic scheme for the direct s-channel Higgs production at FCC-ee collide Angeles Faus-Golfe Development and Optimization of Plasma Cleaning Process for QWR type Cavities Oleksandr HRYHORENKO	Réfectoire des Cordeliers	18:12 - 18:14
Beam-Beam effects at FCC-ee Nikos Nikolopoulos Réfectoire des Cordeliers 18:16 - 18:11 First optics design for a transverse monochromatic scheme for the direct s-channel Higgs production at FCC-ee collide Angeles Faus-Golfe Development and Optimization of Plasma Cleaning Process for QWR type Cavities Oleksandr HRYHORENKO	SR radiation issues in FCC-ee	Guillaume Simon
Réfectoire des Cordeliers 18:16 - 18:11 First optics design for a transverse monochromatic scheme for the direct s-channel Higgs production at FCC-ee collide Angeles Faus-Golfe Development and Optimization of Plasma Cleaning Process for QWR type Cavities Oleksandr HRYHORENKO	Réfectoire des Cordeliers	18:14 - 18:16
First optics design for a transverse monochromatic scheme for the direct s-channel Higgs production at FCC-ee collide Angeles Faus-Golfe Development and Optimization of Plasma Cleaning Process for QWR type Cavities Oleksandr HRYHORENKC	Beam-Beam effects at FCC-ee	Nikos Nikolopoulos
Angeles Faus-Golfe Oleksandr HRYHORENKO Development and Optimization of Plasma Cleaning Process for QWR type Cavities Oleksandr HRYHORENKO	Réfectoire des Cordeliers	18:16 - 18:18
	• • • • • • • • • • • • • • • • • • • •	Higgs production at FCC-ee collide 🤇
Réfectoire des Cordeliers 18:20 - 18:21	Development and Optimization of Plasma Cleaning Process for QWR type Cavities	Oleksandr HRYHORENKO
	Réfectoire des Cordeliers	18:20 - 18:22
	Réfectoire des Cordeliers	18:22 - 18:24



FCC WEEK 2022 03 JUN 2022

JACQUELINE KEINTZEL SUMMARY ACCELERATORS

73

FCC WEEK 2022 03 JUN 2022 JACQUELINE KEINTZEL SUMMARY ACCELERATORS

FUTURE CIRCULAR COLLIDER

FCC WEEK 2022 03 JUN 2022 JACQUELINE KEINTZEL SUMMARY ACCELERATORS

FUTURE CIRCULAR COLLIDER

Thank you for your attention.