

FCC circumference constraints from the injectors and the RF system

Linhao Zhang, Heiko Damerau, Ivan Karpov 31/05/2022

> FCC week 2022 30 May – 03 June, Paris, France

Outline

- Introduction
- Starting point
- Baseline FCC-hh harmonic @ 400 MHz
- > Alternative FCC-hh harmonic @ 500 MHz
- Summary

Introduction

Synchronization principle for hadron synchrotrons

• Basic principle: velocity during transfer is the same.

- $n_{1,2}$ integers should be kept as small as possible
- Transfer is allowed every $n_2 \cdot T_{rev,2}$

Examples

> SPS to LHC transfer $27 \cdot T_{rev,SPS} = 7 \cdot T_{rev,LHC}$

Previous presentations see:

- ✓ <u>148th FCC-ee Optics Design Meeting & 19th FCCIS WP2.2 Meeting</u> (I. Karpov, H. Damerau)
- ✓ FCC-ee parameters meeting # 08 (H. Damerau, I. Karpov, L.H. Zhang)
- ✓ FCC-ee parameters meeting # 09 (H. Damerau, I. Karpov, L.H. Zhang)
- ✓ <u>Discussion on the FCC circumference constraints from the injectors and the RF system</u> (H. Damerau, I. Karpov, L.H. Zhang)

 $T_{rev,1,2}$ -- revolution periods $h_{1,2}$ -- harmonic numbers $C_{1,2}$ -- circumference

Starting point

□ Keep the possibility of SPS & LHC as potential injectors

Proposed FCC circumference: 91172.7 m (PA31-1.0)

LHC RF frequency ~400.79 MHz was initial baseline option for FCC-hh

	Circumference (m)	Harmonic number (400.79 MHz)
FCC	91172.7 (intended)	2x4x4x13x293 = 121888
LHC	2π· 11 ·100· 27/7 = 26658.7	2x3x4x5 x11 x 3x9 = 35640
SPS	$2\pi \cdot 11 \cdot 100 = 6911.5$	2x3x4x5 x11 x 7 = 4620x2

> Why is 121888 unfavourable harmonic number?

- No continuous bunch clock for 25 ns spacing
- Not suited for synchronous transfer ($h_{FCC}/h_{LHC} = 15236/4455$)
- Note that the ratio of harmonic numbers of LHC and SPS is 27/7 (fixed), which comes from the ratio of circumferences of LHC and SPS
- Note that the factor 11 in the harmonic numbers of SPS and LHC comes from the ratio of circumference of SPS and PS, which will be not a constraint assuming PS replacement as FCC-hh pre-injector

Baseline FCC-hh harmonic

Fixed RF frequency: 400.79 MHz

	Circumference (m)	Harmonic number (400.79 MHz)
FCC	91106.187 (shorted by 66.5 m)	2x3x4x5 x5x7x29 = 121800
LHC	2π· 11 ·100· 27/7 = 26658.7	2x3x4x5 x11 x 3x9 = 35640
SPS	$2\pi \cdot 11 \cdot 100 = 6911.5$	2x3x4x5 x11 x 7 = 4620x2

> The pros and cons of h_{FCC} = 121800 @ 400.79MHz

Pros	 Keep the same RF frequency as LHC Continuous bunch clock for experiments for bunch spacings of 2.5, 5.0, 7.5, 10, 12.5, 15, 17.5, 25 ns PS can still be possible as FCC-hh pre-injector
Cons	 LHC-to-FCC transfer wait time may be a little long (297 turns in FCC, corresponding to ~90.2 ms) The prime number of 29 in the division ratios relatively large

Scanned h_{LHC} from 30000 to 76000, f_{RF}: 337 ~ 854 MHz

 \rightarrow Scaling laws: h_{LHC} =35640 + 27*n, h_{SPS} =2*4620 + 7*n

Requirements and assumptions:

- \rightarrow *h*_{FCC} dividable by 2 (sufficient for 4 IPs);
- $\rightarrow \Delta C_{FCC} < \pm 100 \text{ m};$
- → Largest prime factor in the factorization of FCC/LHC/SPS harmonic number < 200;</p>
- \rightarrow Denominator in h_{FCC} / h_{LHC} and $h_{FCC} / h_{SPS} < 300$
- \rightarrow Maximum bunch spacing less or close to 25 ns

Flexible option for RF frequency

Small largest prime factor

Point size indicates the largest prime factor

Scanned h_{LHC} from 30000 to 76000, f_{RF}: 337 ~ 854 MHz

 \rightarrow Scaling laws: h_{LHC} =35640 + 27*n, h_{SPS} =2*4620 + 7*n

- Requirements and assumptions:
 - \rightarrow *h*_{FCC} dividable by 2 (sufficient for 4 IPs);
 - $\rightarrow \Delta C_{FCC} < \pm 100 \text{ m};$
 - → Largest prime factor in the factorization of FCC/LHC/SPS harmonic number < 200;</p>

SPS Wait time for transfer [ms

- \rightarrow Denominator in h_{FCC} / h_{LHC} and $h_{FCC} / h_{SPS} < 300$
- \rightarrow Maximum bunch spacing less or close to 25 ns

Flexible option for RF frequency Small largest prime factor

Scanned h_{LHC} from 30000 to 76000, f_{RF}: 337 ~ 854 MHz

 \rightarrow Scaling laws: h_{LHC} =35640 + 27*n, h_{SPS} =2*4620 + 7*n

Requirements and assumptions:

- \rightarrow *h*_{FCC} dividable by 2 (sufficient for 4 IPs);
- $\rightarrow \Delta C_{FCC} < \pm 100 \text{ m};$
- → Largest prime factor in the factorization of FCC/LHC/SPS harmonic number < 200;</p>

LHC Wait time for transfer [ms

- \rightarrow Denominator in h_{FCC} / h_{LHC} and $h_{FCC} / h_{SPS} < 300$
- \rightarrow Maximum bunch spacing less or close to 25 ns

Flexible option for RF frequency Small largest prime factor Short wait time for transfer

Scanned h_{LHC} from 30000 to 76000, f_{RF}: 337 ~ 854 MHz

 \rightarrow Scaling laws: h_{LHC} =35640 + 27*n, h_{SPS} =2*4620 + 7*n

- Requirements and assumptions:
 - \rightarrow *h*_{FCC} dividable by 2 (sufficient for 4 IPs);
 - $\rightarrow \Delta C_{FCC} < \pm 100 \text{ m};$
 - → Largest prime factor in the factorization of FCC/LHC/SPS harmonic number < 200;</p>
 - \rightarrow Denominator in h_{FCC} / h_{LHC} and $h_{FCC} / h_{SPS} < 300$
 - \rightarrow Maximum bunch spacing less or close to 25 ns

Attractive alternative

	Circumference (m)	Harmonic number (497.34 MHz)
FCC	91140.710 (shorted by 32.0 m)	2x3 ³ x7x4x5x4x5 = 151200
LHC	2π· 11 ·100· 27/7 = 26658.7	$2x3^2x7x13x3^3 = 44226$
SPS	$2\pi \cdot 11 \cdot 100 = 6911.5$	$2x3^2x7x13x7 = 5733x2$

The pros and cons of h_{FCC}=151200 @ 497.34 MHz

Pros	 More flexible native bunch spacings 2.01, 4.02, 6.03, 8.04, 10.05, 12.06, 14.07, 16.09, 18.10, 20.11, 24.13 ns LHC-to-FCC or SPS-to-FCC transfer wait times are favorably small: 35.5 ms or 27.6 ms The corresponding circumference allows many other RF frequencies The largest prime factor (13) small Robust optimum, also for larger max. bunch spacing (e.g. 25 → 50 ns)
Cons	 Requires new RF systems for SPS and/or LHC Exact bunch spacings like 25 ns proposed in FCC-hh CDR need to vary PS needs to be replaced as FCC-hh pre-injector

500 MHz RF system

> Advantage of 500 MHz

- Smaller cavity size
- More beneficial to single bunch stability (for FCC-hh) <u>Discussion on the FCC</u> <u>circumference constraints from the injectors and the RF system (April 26, 2022) · Indico (cern.ch)</u>
- Higher break down voltage, higher gradient

Consequence:

- Need new RF systems in SPS/LHC
- Examples using 500 MHz RF system
 - Mainly in Electron Storage Ring
 - TPS, <u>SLS</u>, <u>BESSY</u>... (synchrotron radiation light sources)
 - CESR, KEK-B, BEPCII...(electron-positron colliders)

Summary

Scheme	Baseline	Alternative
RF frequency [MHz]	400.79	497.34
C _{FCC} [m]	91106.187	91140.710
h _{FCC}	121800	151200
RF system	based on LHC	new
Bunch spacing [ns]	2.5, 5.0, 7.5, 10, 12.5, 15, 17.5, 25 (proposed in FCC-hh CDR)	2.01, 4.02, 6.03, 8.04, 10.05, 12.06, 14.07, 16.09, 18.1, 20.11, 24.13 (More flexible)
LHC-to-FCC transfer	297 revolutions in FCC	117 revolutions in FCC
SPS-to-FCC transfer	11 revolutions in FCC	91 revolutions in FCC
FCC-hh pre-injector	allows PS (1959!)	new
Largest prime factor	29	13

- Baseline scheme of FCC-hh circumference and RF frequency basically meets all requirements proposed in CDR
- Attractive alternative option could offer more flexibility

Thanks for your attention!

Spare slides

Impact of RF frequency on beam dynamics

From single bunch instability point of view:

• Loss of Landau damping¹:

$$N_p = -\frac{V_0 \cos\phi_{s0}}{q\omega_0 \operatorname{Im} Z/k} \frac{\pi \phi_{max}^4}{32\mu(\mu+1)hk_{max}}$$
$$\propto \frac{(h\tau)^4}{h} = h^3 \tau^4$$

 $\rightarrow N_p \propto h^3 \tau^4$ for a constant bunch length

- $\rightarrow N_p \propto h^2$ for a constant longitudinal emittance
- Longitudinal microwave instability²:

$$N_p = \frac{3\pi}{q\omega_0} \frac{hV_0}{\left| (Z_L/n)_{eff} \right|} \left(\frac{L}{2\pi R} \right)^3 \propto h\tau^3$$

→ $N_p \propto h \tau^3$ for a constant bunch length → $N_p \propto h^{1/4}$ for a constant longitudinal emittance

Transverse mode coupling instability²

$$N_p = \frac{4\pi}{q\omega_0} \frac{Q_s E/q}{\beta_{av} \text{Im}(Z_T)_{\text{eff}}} \frac{L}{R} \propto h^{1/2} \tau$$

 $\rightarrow N_p \propto h^{1/2} \tau$ for a constant bunch length

 $\rightarrow N_p \propto h^{1/4}$ for a constant longitudinal emittance

\Rightarrow Higher harmonic number seems more beneficial to a higher bunch intensity

¹ Ivan Karpov, Theodoros Argyropoulos, and Elena Shaposhnikova, Phys. Rev. Accel. Beams 24, 011002 (2021)
 ² Francesco Ruggiero, Single-Beam Collective Effects in the LHC, CERN SL/95-09 (AP)

Results for different $\tau_{\text{spacing,max}}$

Max. bunch spacing < 25.5 ns

From 'Fraction of possible bunch spacing options' point of view, preferable frequency range: 400 ~ 600 MHz

Max. bunch spacing < 30.5 ns

.0

0.8

0.6

0.4

Fraction of possible spacing options

RF frequency [MHz]

Comparison for different $\tau_{\text{spacing,max}}$

RF frequency (MHz)	Bunch spacings \leq 25.5 [ns]	Percen- tage of possible spacings	Bunch spacings ≤ 30.5 [ns]	Percen- tage of possible spacings	Bunch spacings ≤ 50.5 [ns]	Percen- tage of possible spacings
364.35	2.74, 5.49, 8.23, 10.98, 13.72, 16.47, 19.21, 21.96, 24.70	9/9 = 100%	2.74, 5.49, 8.23, 10.98, 13.72, 16.47 19.21, 21.96, 24.7, 27.45, 30.19]	11/11 = 100%	[2.74, 5.49, 8.23, 10.98, 13.72, 16.47, 19.21, 21.96, 24.7, 27.45, 30.19, 32.94, 38.42, 41.17, 49.4]	15/18 = 83.3%
400.79	2.5, 5.0,7.5, 12.5, 15, 17.5, 25	7/10 = 70%	2.5, 5.0,7.5, 12.5, 15, 17.5, 25	7/12 = 58.3%	[2.5, 4.99, 7.49, 12.48, 14.97, 17.47, 24.95, 34.93, 37.43]	9/20 = 45%
497.34	[2.01 4.02 6.03 8.04 10.05 12.06 14.07 16.09 18.1 20.11, 24.13]	11/12 = 91.7%	[2.01, 4.02, 6.03, 8.04, 10.05, 12.06 14.07, 16.09, 18.1, 20.11, 24.13, 28.15, 30.16]	13/15 = 86.7%	[2.01, 4.02, 6.03, 8.04, 10.05, 12.06, 14.07, 16.09, 18.1, 20.11, 24.13, 28.15, 30.16, 36.19, 40.21, 42.22, 48.26, 50.27]	18/25 = 72%
563.54	[1.77, 3.55, 5.32, 7.1, 8.87, 10.65, 12.42, 14.2, 15.97, 17.74, 21.29, 24.84]	12/14 = 85.7%	[1.77, 3.55, 5.32, 7.1, 8.87, 10.65, 12.42, 14.2, 15.97, 17.74, 21.29, 24.84 26.62, 30.17]	14/17 = 82.3%	[1.77, 3.55, 5.32, 7.1, 8.87, 10.65, 12.42, 14.2, 15.97, 17.74, 21.29, 24.84, 26.62, 30.17, 31.94, 35.49, 37.26, 42.59, 49.69]	19/28 = 67.9%
607.26	[1.65, 3.29, 4.94, 6.59, 8.23, 9.88, 11.53, 13.17, 16.47, 18.11, 19.76, 23.05, 24.7]	13/15 = 86.7%	[1.65, 3.29, 4.94, 6.59, 8.23, 9.88, 11.53, 13.17, 16.47, 18.11, 19.76, 23.05, 24.7]	13/18 = 72.2%	[1.65, 3.29, 4.94, 6.59, 8.23, 9.88, 11.53, 13.17, 16.47, 18.11, 19.76, 23.05, 24.7, 32.93, 34.58, 36.23, 39.52, 41.17, 46.11, 49.4]	20/30 = 66.7%
607.86	[1.65, 3.29, 4.94, 6.58, 8.23, 9.87, 11.52, 13.16, 16.45, 18.1, 19.74, 23.03, 24.68]	13/15 = 86.7%	[1.65, 3.29, 4.94, 6.58, 8.23, 9.87, 11.52, 13.16, 16.45, 18.1, 19.74, 23.03 24.68]	13/18 = 72.2%	[1.65, 3.29, 4.94, 6.58, 8.23, 9.87, 11.52, 13.16, 16.45, 18.1, 19.74, 23.03, 24.68, 32.9, 34.55, 36.19, 39.48, 41.13, 46.06, 49.35]	20/30 = 66.7%
728.71	[1.37, 2.74, 4.12, 5.49, 6.86, 8.23, 9.61, 10.98, 12.35, 13.72, 15.1, 16.47, 19.21, 20.58, 21.96, 24.7]	16/18 = 88.8%	[1.37, 2.74, 4.12, 5.49, 6.86, 8.23, 9.61, 10.98, 12.35, 13.72, 15.1, 16.47, 19.21, 20.58, 21.96, 24.7, 27.45, 28.82, 30.19]	19/22 = 86.4%	[1.37, 2.74, 4.12, 5.49, 6.86, 8.23, 9.61, 10.98, 12.35, 13.72, 15.1, 16.47, 19.21, 20.58, 21.96, 24.7, 27.45, 28.82, 30.19, 32.93, 38.42, 41.17, 45.29, 48.03, 49.4]	25/36 = 69.4%
805.22	[1.24, 2.48, 3.73, 4.97, 6.21, 7.45, 9.94, 11.18, 12.42, 14.9, 18.63, 19.87, 21.11, 22.35, 24.84]	15/20 = 75%	[1.24, 2.48, 3.73, 4.97, 6.21, 7.45, 9.94, 11.18, 12.42, 14.9, 18.63, 19.87, 21.11, 22.35, 24.84, 29.81]	16/24 = 66.7%	[1.24, 2.48, 3.73, 4.97, 6.21, 7.45, 9.94, 11.18, 12.42, 14.9, 18.63, 19.87, 21.11, 22.35, 24.84, 29.81, 31.05, 37.26, 42.22, 44.71, 49.68]	21/40 = 52.5%
828.91	[1.21, 2.41, 3.62, 4.83, 6.03, 7.24, 8.44, 9.65, 10.86, 12.06, 14.48, 16.89, 18.1, 21.72, 24.13, 25.33]	16/21 = 76.2%	[1.21, 2.41, 3.62, 4.83, 6.03, 7.24, 8.44, 9.65, 10.86, 12.06, 14.48, 16.89, 18.1, 21.72, 24.13, 25.33, 28.95, 30.16]	18/25 = 72%	[1.21, 2.41, 3.62, 4.83, 6.03, 7.24, 8.44, 9.65, 10.86, 12.06, 14.48, 16.89, 18.1, 21.72, 24.13, 25.33, 28.95, 30.16, 33.78, 36.19, 42.22, 43.43, 48.26]	23/41 = 56.1%

Bunch (trains) must have 4-fold symmetry to make particle collision occurring simultaneously in the 4 IPs; Two-fold symmetry only ensures a pair of IPs out of 4 IPs exist collisions at the same time

Question: The 4-fold symmetry of bunch trains must require the 4-fold symmetry of the harmonics (or dividable by 4)?

Bunch (trains) must have 4-fold symmetry to make particle collision occurring simultaneously in the 4 IPs; Two-fold symmetry only ensures a pair of IPs out of 4 IPs exist collisions at the same time Question: The 4-fold symmetry of bunch trains must require the 4-fold symmetry of the harmonics (or dividable by 4)?