CIRCULAR COLLIDER

Institute of High Energy Physics Chinese Academy of Sciences

FCC circumference constraints from the injectors and the RF system

Linhao Zhang, Heiko Damerau, Ivan Karpov 31/05/2022

FCC week 2022
30 May - 03 June, Paris, France

Outline

$>$ Introduction
$>$ Starting point
> Baseline FCC-hh harmonic @ 400 MHz
> Alternative FCC-hh harmonic @ 500 MHz
$>$ Summary

Introduction

Synchronization principle for hadron synchrotrons

- Basic principle: velocity during transfer is the same.

$$
\begin{aligned}
& \Rightarrow \frac{C_{2}}{C_{1}}=\frac{v \cdot T_{r e v, 2}}{v \cdot T_{r e v, 1}}=\frac{f_{\text {rev, } 1}}{f_{\text {rev }, 2}}=\frac{n_{1}}{n_{2}} \\
& f_{\text {rev }}=\frac{f_{R F}}{h} \quad \text { Assume } \\
& f_{R F, 1}=f_{R F, 2}
\end{aligned} \frac{h_{2}}{h_{1}}=\frac{C_{2}}{C_{1}}=\frac{n_{1}}{n_{2}}
$$

- $n_{1,2}$ integers should be kept as small as possible
- Transfer is allowed every $n_{2} \cdot T_{\text {rev, } 2}$

Examples

> SPS to LHC transfer $27 \cdot T_{\text {rev,SPS }}=7 \cdot T_{\text {rev,LHC }}$

Previous presentations see:

\checkmark 148th FCC-ee Optics Design Meeting \& 19th FCCIS WP2.2 Meeting (I. Karpov, H. Damerau)
\checkmark FCC-ee parameters meeting \# 08 (H. Damerau, I. Karpov, L.H. Zhang)
\checkmark FCC-ee parameters meeting \# 09 (H. Damerau, I. Karpov, L.H. Zhang)
\checkmark Discussion on the FCC circumference constraints from the injectors and the RF system (H. Damerau, I. Karpov, L.H. Zhang)

Starting point

\square Keep the possibility of SPS \& LHC as potential injectors
\square Proposed FCC circumference: 91172.7 m (PA31-1.0)
\square LHC RF frequency $\sim 400.79 \mathrm{MHz}$ was initial baseline option for FCC-hh

	Circumference (m)	Harmonic number $(400.79 \mathrm{MHz})$
FCC	91172.7 (intended)	$2 \times 4 \times 4 \times 13 \times 293=121888$
LHC	$2 \pi \cdot 11 \cdot 100 \cdot 27 / 7=26658.7$	$2 \times 3 \times 4 \times 5 \times 11 \times 3 \times 9=35640$
SPS	$2 \pi \cdot 11 \cdot 100=6911.5$	$2 \times 3 \times 4 \times 5 \times 11 \times 7=4620 \times 2$

> Why is 121888 unfavourable harmonic number?

- No continuous bunch clock for 25 ns spacing
- Not suited for synchronous transfer ($h_{\text {FCC }} / h_{\text {LHC }}=15236 / 4455$)
$>$ Note that the ratio of harmonic numbers of LHC and SPS is 27/7 (fixed), which comes from the ratio of circumferences of LHC and SPS
$>$ Note that the factor 11 in the harmonic numbers of SPS and LHC comes from the ratio of circumference of SPS and PS, which will be not a constraint assuming PS replacement as FCC-hh pre-injector

Baseline FCC-hh harmonic

> Fixed RF frequency: 400.79 MHz

	Circumference (m)	Harmonic number $(400.79 \mathrm{MHz})$
FCC	91106.187 (shorted by 66.5 m$)$	$2 \times 3 \times 4 \times 5 \times 5 \times 7 \times 29=121800$
LHC	$2 \pi \cdot 11 \cdot 100 \cdot 27 / 7=26658.7$	$2 \times 3 \times 4 \times 5 \times 11 \times 3 \times 9=35640$
SPS	$2 \pi \cdot 11 \cdot 100=6911.5$	$2 \times 3 \times 4 \times 5 \times 11 \times 7=4620 \times 2$

$>$ The pros and cons of $h_{\text {FCC }}=121800 @ 400.79 \mathrm{MHz}$

	- Keep the same RF frequency as LHC
• Continuous bunch clock for experiments for bunch spacings of 2.5,	
	$5.0,7.5,10,12.5,15,17.5,25 \mathrm{~ns}$
	PS can still be possible as FCC-hh pre-injector

Why stick to $f_{\text {RF }}=400.79 \mathrm{MHz}$?

$>$ Scanned $h_{\text {LHC }}$ from 30000 to 76000, $f_{\text {RF }}: 337 \sim 854 \mathrm{MHz}$
\rightarrow Scaling laws: $h_{\text {LHC }}=35640+27^{*} n, h_{\text {SPS }}=2^{*} 4620+7 * n$
$>$ Requirements and assumptions:
$\rightarrow \boldsymbol{h}_{\text {FCC }}$ dividable by 2 (sufficient for 4 IPs);
$\rightarrow \Delta C_{F C C}< \pm 100 \mathrm{~m}$;
\rightarrow Largest prime factor in the factorization of FCC/LHC/SPS harmonic number < 200;
\rightarrow Denominator in $h_{\text {FCC }} / h_{\text {LHC }}$ and $h_{\text {FCC }} / h_{\text {SPS }}<300$
\rightarrow Maximum bunch spacing less or close to 25 ns

Flexible option for RF frequency
Small largest prime factor

Why stick to $f_{\text {RF }}=400.79 \mathrm{MHz}$?

> Scanned $h_{\text {LHC }}$ from 30000 to 76000, $f_{\text {RF }}: 337 \sim 854 \mathrm{MHz}$
\rightarrow Scaling laws: $h_{\text {LHC }}=35640+27^{*} n, h_{\text {SPS }}=2^{*} 4620+7 * n$
$>$ Requirements and assumptions:
$\rightarrow h_{\text {FCC }}$ dividable by 2 (sufficient for 4 IPs);
$\rightarrow \Delta C_{F C C}< \pm 100 \mathrm{~m}$;
\rightarrow Largest prime factor in the factorization of FCC/LHC/SPS harmonic number < 200;
\rightarrow Denominator in $h_{\mathrm{FCC}} / h_{\mathrm{LHC}}$ and $h_{\mathrm{FCC}} / h_{\mathrm{SPS}}<300$
\rightarrow Maximum bunch spacing less or close to 25 ns

Flexible option for RF frequency
Small largest prime factor

Why stick to $f_{\text {RF }}=400.79 \mathrm{MHz}$?

> Scanned $h_{\text {LHC }}$ from 30000 to 76000, $f_{\text {RF }}: 337 \sim 854 \mathrm{MHz}$
\rightarrow Scaling laws: $h_{\text {LHC }}=35640+27^{*} n, h_{\text {SPS }}=2^{*} 4620+7 * n$
$>$ Requirements and assumptions:
$\rightarrow h_{\text {FCC }}$ dividable by 2 (sufficient for 4 IPs);
$\rightarrow \Delta C_{F C C}< \pm 100 \mathrm{~m}$;
\rightarrow Largest prime factor in the factorization of FCC/LHC/SPS harmonic number < 200;
\rightarrow Denominator in $h_{\mathrm{FCC}} / h_{\mathrm{LHC}}$ and $h_{\mathrm{FCC}} / h_{\mathrm{SPS}}<300$
\rightarrow Maximum bunch spacing less or close to 25 ns

Flexible option for RF frequency
Small largest prime factor
Short wait time for transfer

Why stick to $f_{\text {RF }}=400.79 \mathrm{MHz}$?

$>$ Scanned $h_{\text {LHC }}$ from 30000 to 76000, $f_{\text {RF }}: 337 \sim 854 \mathrm{MHz}$
\rightarrow Scaling laws: $h_{\text {LHC }}=35640+27^{*} n, h_{\text {SPS }}=2^{*} 4620+7 * n$
$>$ Requirements and assumptions:
$\rightarrow h_{\text {FCC }}$ dividable by 2 (sufficient for 4 IPs);
$\rightarrow \Delta C_{F C C}< \pm 100 \mathrm{~m}$;
\rightarrow Largest prime factor in the factorization of FCC/LHC/SPS harmonic number < 200;
\rightarrow Denominator in $h_{\text {FCC }} / h_{\text {LHC }}$ and $h_{\text {FCC }} / h_{\text {SPS }}<300$
\rightarrow Maximum bunch spacing less or close to 25 ns

Flexible option for RF frequency
Small largest prime factor
Short wait time for transfer
Many bunch spacings possible

Attractive alternative

	Circumference (m)	Harmonic number $(497.34 \mathrm{MHz})$
FCC	$91140.710($ shorted by 32.0 m$)$	$2 \times 3^{3} \times 7 \times 4 \times 5 \times 4 \times 5=151200$
LHC	$2 \pi \cdot 11 \cdot 100 \cdot 27 / 7=26658.7$	$2 \times 3^{2} \times 7 \times 13 \times 3^{3}=44226$
SPS	$2 \pi \cdot 11 \cdot 100=6911.5$	$2 \times 3^{2} \times 7 \times 13 \times 7=5733 \times 2$

$>$ The pros and cons of $h_{\text {FCC }}=151200 @ 497.34 \mathrm{MHz}$

- More flexible native bunch spacings 2.01, 4.02, 6.03, 8.04, 10.05, 12.06, 14.07, 16.09, 18.10, 20.11, 24.13 ns
- LHC-to-FCC or SPS-to-FCC transfer wait times are favorably small: 35.5 ms or 27.6 ms
- The corresponding circumference allows many other RF frequencies
- The largest prime factor (13) small
- Robust optimum, also for larger max. bunch spacing (e.g. $\mathbf{2 5} \boldsymbol{\rightarrow} \mathbf{5 0} \mathbf{n s}$)
« Requires new RF systems for SPS and/or LHC
- Exact bunch spacings like 25 ns proposed in FCC-hh CDR need to vary - PS needs to be replaced as FCC-hh pre-injector

500 MHz RF system

> Advantage of 500 MHz

- Smaller cavity size
- More beneficial to single bunch stability (for FCC-hh) Discussion on the FCC circumference constraints from the injectors and the RF system (April 26, 2022) • Indico (cern.ch)
- Higher break down voltage, higher gradient
> Consequence:
- Need new RF systems in SPS/LHC
> Examples using 500 MHz RF system
- Mainly in Electron Storage Ring
- TPS, SLS, BESSY... (synchrotron radiation light sources)
- CESR, KEK-B, BEPCII...(electron-positron colliders)

Summary

Scheme	Baseline	Alternative
RF frequency [MHz]	400.79	497.34
$C_{\text {FCC }}[\mathrm{m}]$	91106.187	91140.710
$h_{\text {FCC }}$	121800	151200
RF system	based on LHC	new
Bunch spacing [ns]	2.5, 5.0, 7.5, 10, 12.5, 15, 17.5, 25 (proposed in FCC-hh CDR)	$\begin{gathered} \text { 2.01, 4.02, 6.03, 8.04, } \\ \text { 10.05, 12.06, 14.07, } \\ \text { 16.09, 18.1, 20.11, } 24.13 \\ \text { (More flexible) } \end{gathered}$
LHC-to-FCC transfer	297 revolutions in FCC	117 revolutions in FCC
SPS-to-FCC transfer	11 revolutions in FCC	91 revolutions in FCC
FCC-hh pre-injector	allows PS (1959!)	new
Largest prime factor	29	13

- Baseline scheme of FCC-hh circumference and RF frequency basically meets all requirements proposed in CDR
- Attractive alternative option could offer more flexibility

Thanks for your attention!

Spare slides

Impact of RF frequency on beam dynamics

From single bunch instability point of view:

- Loss of Landau damping ${ }^{1}$:

$$
\begin{gathered}
N_{p}=-\frac{V_{0} \cos \phi_{s 0}}{q \omega_{0} \operatorname{Im} Z / k} \frac{\pi \phi_{\max }^{4}}{32 \mu(\mu+1) h k_{\max }} \\
\propto \frac{(h \tau)^{4}}{h}=h^{3} \tau^{4}
\end{gathered}
$$

$\rightarrow N_{p} \propto h^{3} \tau^{4}$ for a constant bunch length
$\rightarrow N_{p} \propto h^{2}$ for a constant longitudinal emittance

- Longitudinal microwave instability ${ }^{2}$:

$$
N_{p}=\frac{3 \pi}{q \omega_{0}} \frac{h V_{0}}{\left|\left(Z_{L} / n\right)_{e f f}\right|}\left(\frac{L}{2 \pi R}\right)^{3} \propto h \tau^{3}
$$

$\rightarrow N_{p} \propto h \tau^{3}$ for a constant bunch length
$\rightarrow N_{p} \propto h^{1 / 4}$ for a constant longitudinal emittance

- Transverse mode coupling instability ${ }^{2}$

$$
N_{p}=\frac{4 \pi}{q \omega_{0}} \frac{Q_{s} E / q}{\beta_{a v} \operatorname{Im}\left(Z_{T}\right)_{\mathrm{eff}}} \frac{L}{R} \propto h^{1 / 2} \tau
$$

$\rightarrow N_{p} \propto h^{1 / 2} \tau$ for a constant bunch length
$\rightarrow N_{p} \propto h^{1 / 4}$ for a constant longitudinal emittance

\Rightarrow Higher harmonic number seems more beneficial to a higher bunch intensity

Results for different $\tau_{\text {spacing, max }}$

Max. bunch spacing < 25.5 ns

Max. bunch spacing < 50.5 ns

Max. bunch spacing < 30.5 ns

From 'Fraction of possible bunch spacing options' point of view, preferable frequency range:

$$
400 \text { ~ } 600 \mathrm{MHz}
$$

Comparison for different $\tau_{\text {spacing, max }}$

RF frequency (MHz)	Bunch spacings ≤ 25.5 [ns]	Percentage of possible spacings	Bunch spacings ≤ 30.5 [ns]	Percentage of possible spacings	Bunch spacings ≤ 50.5 [ns]	Percentage of possible spacings
364.35	$\begin{gathered} 2.74,5.49,8.23,10.98,13.72 \\ 16.47,19.21,21.96,24.70 \end{gathered}$	$\begin{aligned} & 9 / 9= \\ & 100 \% \end{aligned}$	$\begin{gathered} 2.74,5.49,8.23,10.98,13.72,16.47 \\ 19.21,21.96,24.7,27.45,30.19] \end{gathered}$	$\begin{gathered} 11 / 11= \\ 100 \% \end{gathered}$	$\begin{aligned} & {[2.74,5.49,8.23,10.98,13.72,16.47} \\ & 19.21,21.96,24.7,27.45,30.19,32.94 \\ & 38.42,41.17,49.4] \end{aligned}$	$\begin{gathered} 15 / 18= \\ 83.3 \% \end{gathered}$
400.79	$2.5,5.0,7.5,12.5,15,17.5,25$	$\begin{gathered} 7 / 10= \\ 70 \% \end{gathered}$	$2.5,5.0,7.5,12.5,15,17.5,25$	$\begin{aligned} & 7 / 12= \\ & 58.3 \% \end{aligned}$	$\begin{aligned} & {[2.5,4.99,7.49,12.48,14.97,17.47,} \\ & 24.95,34.93,37.43] \end{aligned}$	$\begin{gathered} 9 / 20= \\ 45 \% \end{gathered}$
497.34	$\begin{gathered} {\left[\begin{array}{ll} 2.014 .026 .038 .0410 .0512 .06 \\ 14.0716 .0918 .120 .11, ~ 24.13] \end{array}\right.} \end{gathered}$	$\begin{aligned} & 11 / 12= \\ & 0170 \end{aligned}$ 91.7\%	$\begin{gathered} {[2.01,4.02,6.03,8.04,10.05,12.06} \\ 14.07,16.09,18.1,20.11,24.13 \\ 28.15,30.16] \end{gathered}$	$\begin{gathered} 13 / 15= \\ 86.7 \% \end{gathered}$	$\begin{array}{\|} {[2.01,4.02,6.03,8.04,10.05,12.06} \\ 14.07,16.09,18.1,20.11,24.13,28.15, \\ 30.16,36.19,40.21,42.22,48.26,50.27 \end{array}$	$\begin{gathered} 18 / 25= \\ 72 \% \end{gathered}$
563.54	$\begin{gathered} {[1.77,3.55,5.32,7.1,8.87,10.65,} \\ 12.42,14.2,15.97,17.74,21.29, \\ 24.84] \end{gathered}$	$\begin{gathered} 12 / 14= \\ 85.7 \% \end{gathered}$	$\begin{gathered} {[1.77,3.55,5.32,7.1,8.87,10.65,} \\ 12.42,14.2,15.97,17.74,21.29,24.84 \\ 26.62,30.17] \end{gathered}$	$\begin{gathered} 14 / 17= \\ 82.3 \% \end{gathered}$	$\begin{gathered} {[1.77,3.55,5.32,7.1,8.87,10.65,12.42,} \\ 14.2,15.97,17.74,21.29,24.84,26.62, \\ 30.17,31.94,35.49,37.26,42.59,49.69] \end{gathered}$	$\begin{gathered} 19 / 28= \\ 67.9 \% \end{gathered}$
607.26	$\begin{gathered} {[1.65,3.29,4.94,6.59,8.23,9.88,} \\ 11.53,13.17,16.47,18.11,19.76, \\ 23.05,24.7] \end{gathered}$	$\begin{gathered} 13 / 15= \\ 86.7 \% \end{gathered}$	$\begin{gathered} {[1.65,3.29,4.94,6.59,8.23,9.88,} \\ 11.53,13.17,16.47,18.11,19.76, \\ 23.05,24.7] \end{gathered}$	$\begin{gathered} 13 / 18= \\ 72.2 \% \end{gathered}$	$\begin{gathered} {[1.65,3.29,4.94,6.59,8.23,9.88,11.53,} \\ 13.17,16.47,18.11,19.76,23.05,24.7, \\ 32.93,34.58,36.23,39.52,41.17,46.11, \\ 49.4] \end{gathered}$	$\begin{gathered} 20 / 30= \\ 66.7 \% \end{gathered}$
607.86	$\begin{gathered} {[1.65,3.29,4.94,6.58,8.23,9.87} \\ 11.52,13.16,16.45,18.1,19.74 \\ 23.03,24.68] \end{gathered}$	$\begin{gathered} 13 / 15= \\ 86.7 \% \end{gathered}$	$\begin{gathered} {[1.65,3.29,4.94,6.58,8.23,9.87} \\ 11.52,13.16,16.45,18.1,19.74,23.03 \\ 24.68] \end{gathered}$	$\begin{gathered} 13 / 18= \\ 72.2 \% \end{gathered}$	$\begin{gathered} {[1.65,3.29,4.94,6.58,8.23,9.87,11.52,} \\ 13.16,16.45,18.1,19.74,23.03,24.68, \\ 32.9,34.55,36.19,39.48,41.13,46.06, \\ 49.35] \end{gathered}$	$\begin{gathered} 20 / 30= \\ 66.7 \% \end{gathered}$
728.71	$\begin{gathered} {[1.37,2.74,4.12,5.49,6.86,8.23} \\ 9.61,10.98,12.35,13.72,15.1,16.47 \\ 19.21,20.58,21.96,24.7] \end{gathered}$	$\begin{gathered} 16 / 18= \\ 88.8 \% \end{gathered}$	$\begin{aligned} & {[1.37,2.74,4.12,5.49,6.86,8.23,9.61} \\ & 10.98,12.35,13.72,15.1,16.47,19.21 \\ & 20.58,21.96,24.7,27.45,28.82,30.19] \end{aligned}$	$\begin{gathered} \text { 19/22 = } \\ 86.4 \% \end{gathered}$	$\begin{aligned} & {[1.37,2.74,4.12,5.49,6.86,8.23,9.61} \\ & 10.98,12.35,13.72,15.1,16.47,19.21 \\ & 20.58,21.96,24.7,27.45,28.82,30.19 \\ & 32.93,38.42,41.17,45.29,48.03,49.4] \end{aligned}$	$\begin{gathered} 25 / 36= \\ 69.4 \% \end{gathered}$
805.22	$\begin{gathered} {[1.24,2.48,3.73,4.97,6.21,7.45} \\ 9.94,11.18,12.42,14.9,18.63,19.87 \\ 21.11,22.35,24.84] \end{gathered}$	$\begin{gathered} 15 / 20= \\ 75 \% \end{gathered}$	$\begin{gathered} {[1.24,2.48,3.73,4.97,6.21,7.45,9.94} \\ 11.18,12.42,14.9,18.63,19.87,21.11 \\ 22.35,24.84,29.81] \end{gathered}$	$\begin{gathered} 16 / 24= \\ 66.7 \% \end{gathered}$	$\begin{gathered} {[1.24,2.48,3.73,4.97,6.21,7.45,9.94} \\ 11.18,12.42,14.9,18.63,19.87,21.11 \\ 22.35,24.84,29.81,31.05,37.26,42.22 \\ 44.71,49.68] \end{gathered}$	$\begin{gathered} 21 / 40= \\ 52.5 \% \end{gathered}$
828.91	$\begin{gathered} {[1.21,2.41,3.62,4.83,6.03,7.24} \\ 8.44,9.65,10.86,12.06,14.48,16.89 \\ 18.1,21.72,24.13,25.33] \end{gathered}$	$\begin{gathered} 16 / 21= \\ 76.2 \% \end{gathered}$	$\begin{gathered} {[1.21,2.41,3.62,4.83,6.03,7.24,8.44} \\ 9.65,10.86,12.06,14.48,16.89,18.1, \\ 21.72,24.13,25.33,28.95,30.16] \end{gathered}$	$\begin{gathered} 18 / 25= \\ 72 \% \end{gathered}$	$\begin{gathered} {[1.21,2.41,3.62,4.83,6.03,7.24,8.44} \\ 9.65,10.86,12.06,14.48,16.89,18.1 \\ 21.72,24.13,25.33,28.95,30.16,33.78 \\ 36.19,42.22,43.43,48.26] \end{gathered}$	$\begin{gathered} 23 / 41 \text { = } \\ 56.1 \% \end{gathered}$

Bunch (trains) must have
4-fold symmetry to make particle collision occurring simultaneously in the 4 IPs; Two-fold symmetry only ensures a pair of IPs out of 4 IPs exist collisions at the

Question:
The 4 -fold symmetry of bunch trains must require the 4 -fold symmetry of the harmonics (or dividable by 4)?

