(Pre-)Injector Layout and parameters

	Baseline	HE Linac	Unit
Ring for injection	SPS/PBR	BR	
Injection energy	6	20	GeV
Bunch population both species	3.47 (5.55)	3.12 (5.0)	1E10 (nC)
Repetition rate	200	200	Hz
Number of bunches	2	2	
Bunch spacing	17.5-100	17.5-100	ns
Normalized emittance (x, y) (rms)	50, 50	50, 50	mm.mrad
Bunch length (rms)	~1	~1	mm
Energy spread (rms)	<0.1	<0.1	%

- Still two options: SPS or High-energy Linac to rump up the beam energy to 20 GeV
- 2-bunchs at 200 Hz, time separation few tens of ns, can fullfill the specification for the collider rings
- Common linac at 200 Hz (electrons) + 200 Hz (positrons) when positron are generated
- Specifications are fullfilled for the electron bunch (beam dynamics for the e-linac and common linac well advanced), still pending decision on the rf structures and bunch compressor
- Electron source: an injector based on a photocathode RF gun can provide electrons for both ring injection and positron production
 - The 100% amplitude modulation of the electron and positron charge required for injection into the collider ring could be provided from an optical modulator in the laser system under investigation
- e+linac: rf design well advanced, beam dynamics on-going
- Positron source: yield very promising but a more accurate investigation of the DR acceptance is on-going. Two options still open for the AMD: HTS solenoid or Flux concentrator.
- Energy compression before DR under investigation
- The concepts for the DR and the return transfer line are well established

→ More details in the FCCee Injector sessions on Tuesady afternoon, there are 10 talks!!

Acknowledgments

This work was done under the auspices of CHART (Swiss Accelerator Research and Technology) Collaboration, <u>https://chart.ch</u>

FCCIS: 'This project has received funding from the European Union's Horizon 2020 research and innovation programme under the European Union's Horizon 2020 research and innovation programme under grant agreement No 951754.'