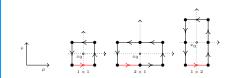
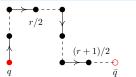


# SPECTRUM OF VERY EXCITED FLUX TUBES IN SU(3) GAUGE THEORY


ALIREZA SHARIFIAN WITH: PEDRO BICUDO AND NUNO CARDOSO




#### **ABSTRACT**

As gluons, the force carriers of strong interactions, have color charge; the gluonic field is squeezed in space-time due to the self-interaction and forms a flux tube in the vacuum; this is in contrast to the electromagnetic field spreading out in space. The flux tube can be modeled as a relativistic string which its quantization leads to a tower of levels. The simplest model of a quantum string is known as the Nambu-Goto string model. We used lattice QCD to study the spectrum of the flux tube with different symmetries. We could get a significant number of excitations by using different types of action, smearing techniques, large operator basis, and solving generalized eigenvalue problem. Moreover, we compare our results with the Nambu-Goto string model to see its deviation, which could be a signal for novel phenomena beyond the model.

## ACTIONS, OPERATORS



**Fig. 1:** Action is sum over the smallest close loop, called plaquatte



**Fig. 2:** An example of operators

$$C(t)\nu = \lambda(t)C(t_0)\nu \tag{4}$$

$$E_n = \log \frac{\lambda_n(t)}{\lambda_n(t+1)} \tag{5}$$

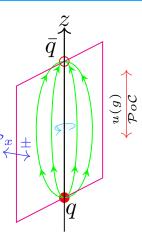
Generalized eigenvalue problem.

#### NAMBU-GOTO STRING MODEL

The Nambu-Goto string model, predict the tower of excitation for flux tube energy

$$V(R) = \sqrt{\sigma^2 R^2 + 2\pi\sigma(N - (D - 2)/24)}$$
 (1)

Modified ansatz to search for deviation:


$$V_1(R) = \sigma R \sqrt{1 + \frac{2\pi}{\sigma_2 R^2} (N - (D - 2)/24)}$$
 (2)

$$V_2(R) = V_0 + \sigma_1 R \sqrt{1 + \frac{2\pi}{\sigma_2 R^2} (N - (D - 2)/24)}$$
 (3)

# QUNATUM NAMBER OF FLUX TUBE

- z-component of angular momentum:  $\Lambda = 0, 1, 2, 3, \ldots \rightarrow \Sigma, \ \Pi, \ \Delta, \ \Phi, \ldots$
- Charge conjugation & spatial inversion, eigenvalues:  $\eta = 1, -1 \rightarrow p_3$  g, u
- For  $\Sigma(\Lambda=0)$ , plane inversion, eigenvalues:  $\epsilon=+,-$

All the quantum numbers:  $\Sigma_g^+$ ,  $\Sigma_g^-$ ,  $\Sigma_u^+$ ,  $\Sigma_u^-$ ,  $\Pi_g$ ,  $\Pi_u$ ,  $\Delta_u$ ,  $\Delta_g$ , . . .



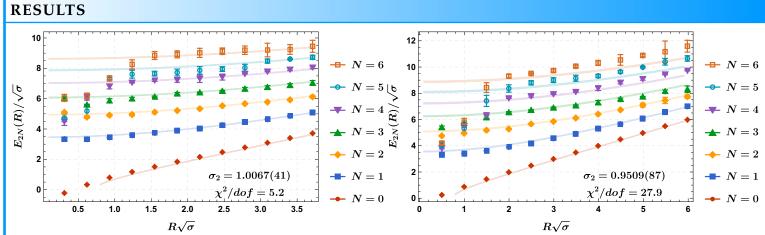
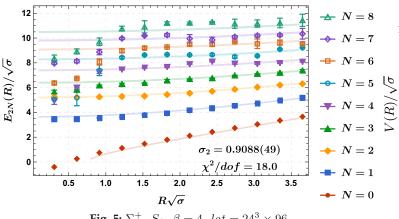
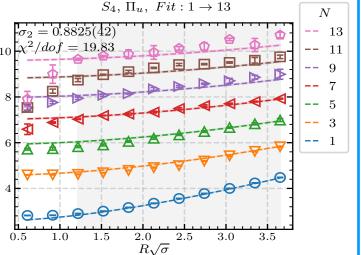





Fig. 3:  $\Sigma_g^+,\ W_2,\ \beta=5.9,\ lat=24^3\times 48$ 



**Fig. 5:**  $\Sigma_g^+$ ,  $S_4$ ,  $\beta = 4$ ,  $lat = 24^3 \times 96$ 



**Fig. 4:**  $\Sigma_a^+$ ,  $W_4$ ,  $\beta = 5.6$ ,  $lat = 24^3 \times 96$ 


Fig. 6:  $S_4$ ,  $\Pi_u$ 

W denotes to Wilson lattice action and S indicates tadpole improved action. The index of W and S show anisotropic factor  $\xi$  where  $\xi$  =spatial lattice spacing/temporal lattice spacing

#### Conclusion

| $\Lambda_{\eta}^{+}$ | $\Sigma_g^+$ | $\Sigma_g^-$ | $\Sigma_u^+$ | $\Sigma_u^-$ | $\Pi_g$ | $\Pi_u$ | $\Delta_g$ | $\Delta_u$ |
|----------------------|--------------|--------------|--------------|--------------|---------|---------|------------|------------|
| $S_{II}$             | 2            | 0            | 0            | 0            | 1       | 1       | 1          | 0          |
|                      | 8            | 5            | 5            | 3            | 5       | 6       | 6          | 5          |

**Table 1:** First row: Number of excitations reported in the literature, highlighted row: our result, with improved action  $S_4$ 



**Fig. 7:** Almost 10% deviation from the string tension  $\sigma$  of Nambu-Goto string model

### REFERENCES

[1] P. Bicudo, N. Cardoso, and A. Sharifian. Spectrum of very excited  $\sigma_a^+$  flux tubes in su(3) gauge theory, 2021.



