Contribution ID: 60 Type: Poster

Electrospun nanofibers loaded with Truvada® as a novel intravaginal delivery system for HIV prophylaxis

Friday 24 September 2021 13:30 (1h 30m)

HIV stands as an increasing global burden and sexual transmission remains the leading cause of new infections, particularly in women in the Sub-Saharan region [1]. New prevention strategies are urgent and vaginal microbicides have proven to be promising alternatives to prematurely fight and control its dissemination. In this study, we developed TDF/FTC-loaded fibers and tested their pharmacokinetics (PK) compared to oral Truvada® [2].

Hydrophobic and hydrophilic fibers were produced by electrospinning using polycaprolactone (PCL) and poly(vinyl alcohol) (PVA) with drug-loaded liposomes (DMPC:Chol:DOPE, 7:2:1), respectively. They were further characterized regarding their: (i) size and morphology; (ii) structure and mechanical properties; (iii) drug loading and in vitro drug release; (iv) interaction with mucin molecules; and (v) in vitro cytotoxicity using the MTT metabolic activity assay. Additionally, PK were assessed in medroxyprogesterone- treated ICR mice. Drug levels in vaginal lavages, vaginal tissues and blood plasma were determined by LC-MS/MS after vaginal administration of fibers (70 μ g/50 μ g of TDF/FTC) and compared to the continuous treatment with daily oral Truvada® (61.5 mg/mg per kg).

The mean section diameter of PCL and liposomes/PVA fibers was of \approx 700 nm and \approx 150 nm, respectively. Furthermore, the strong interactions observed with mucin molecules anticipate that all fibers may promote higher vaginal retention times. TDF/FTC release profiles were fast and almost all incorporated drug was released within 15-30 min in micellar medium (pH= 4.5). The toxicity of drug-loaded fibers to CaSki and HEC-1-A genital cell lines was negligible. In vivo experiments showed that liposomes/PVA fibers were able to significantly enhance the concentrations of TDF, tenofovir (TFV; resulting from TDF

(R)

hydrolysis) and FTC, as compared to PCL fibers and oral Truvada . Relative bioavailability (Frel) values of TFV and FTC were 4.0 and 29.4, respectively, as compared to Truvada® (TDF was not detected for oral treatment). PCL fibers also featured higher drug levels in lavages than oral Truvada® (Frel values for TFV and FTC were 2.3 and 2.4, respectively).

Our results suggest that liposomes/PVA fibers may constitute an interesting system for the vaginal delivery of TDF/FTC in the context of topical pre-exposure prophylaxis.

References

- [1] R. Nunes et al., Journal of Controlled Release 334, (2021).
- [2] J. das Neves et al., Advanced Drug Delivery Reviews 103, (2016).

Author: FARIA, M.J.

Co-authors: BOGAS, S.; SARMENTO, B.; LÚCIO, M.; NUNES, R.; VISEU, T.

Presenter: FARIA, M.J.

Session Classification: Materials and technologies for Health and Environment (Posters)

Track Classification: Materials and Technologies for Health and Environment