

Universidade do Minho Escola de Ciências

Quantum electrodynamics with polaritons in 2D materials

Bruno Amorim

CF-UM-UP, University of Minho

in collaboration with

B. A. Ferreira, J. C. G. Henriques, A. J. Chaves, N. M. R. Peres

First LaPMET Workshop

amorim.bruno@fisica.uminho.pt

23rd and 24th September, 2021

Quantum polaritons

- Description of light-matter interactions at the nanoscale requires quantization of Eletromagnetic (EM) field
- Polaritons: quasi-particles resulting from hydridization between photons and matter excitations
- EM Dyadic Green's function:
 - Includes quantum effects
 - Muddles physical interpretation X

Quantum polaritons

- Description of light-matter interactions at the nanoscale requires quantization of Eletromagnetic (EM) field
- Polaritons: quasi-particles resulting from hydridization between photons and matter excitations
- EM Dyadic Green's function:
 - Includes quantum effects
 - Muddles physical interpretation X

What we want:

Quantum description of polaritonic modes

The problem: quantization of EM field in dispersive media

- Canonical quantization of EM field in static dielectric media, poses no problem.
- Hamiltonian in the Weyl gauge ($\phi = 0$):

$$H_{\rm EM} = \int d^3 \mathbf{r} \left(\frac{1}{2\epsilon_0} \mathbf{\Pi} \cdot \boldsymbol{\epsilon}^{-1} \cdot \mathbf{\Pi} + \frac{1}{2\mu_0} \left(\nabla \times \mathbf{A} \right)^2 \right)$$

$$\mathbf{\Pi} = \epsilon_0 \boldsymbol{\epsilon} \partial_t \mathbf{A}$$

The problem: quantization of EM field in dispersive media

- Canonical quantization of EM field in static dielectric media, poses no problem.
- Hamiltonian in the Weyl gauge ($\phi = 0$):

$$H_{\rm EM} = \int d^3 \mathbf{r} \left(\frac{1}{2\epsilon_0} \mathbf{\Pi} \cdot \boldsymbol{\epsilon}^{-1} \cdot \mathbf{\Pi} + \frac{1}{2\mu_0} \left(\nabla \times \mathbf{A} \right)^2 \right)$$

$$\mathbf{\Pi} = \epsilon_0 \boldsymbol{\epsilon} \partial_t \mathbf{A}$$

• A problem occurs when we try to include dispersion $\ \epsilon
ightarrow \epsilon(\omega)$

$$\mathbf{P}(\omega) = \epsilon_0 \mathbf{\chi}(\omega) \mathbf{E}(\omega)$$

The problem: quantization of EM field in dispersive media

- Canonical quantization of EM field in static dielectric media, poses no problem.
- Hamiltonian in the Weyl gauge ($\phi = 0$):

$$H_{\rm EM} = \int d^3 \mathbf{r} \left(\frac{1}{2\epsilon_0} \mathbf{\Pi} \cdot \boldsymbol{\epsilon}^{-1} \cdot \mathbf{\Pi} + \frac{1}{2\mu_0} \left(\nabla \times \mathbf{A} \right)^2 \right)$$

$$\Pi = \epsilon_0 \epsilon \partial_t \mathbf{A}$$

• A problem occurs when we try to include dispersion $\ \epsilon
ightarrow \epsilon(\omega)$

$$\mathbf{P}(\omega) = \epsilon_0 \mathbf{\chi}(\omega) \mathbf{E}(\omega) \qquad \qquad \mathbf{P}(t) = \epsilon_0 \int dt' \mathbf{\chi}(t, t') \mathbf{E}(t')$$

Dispersion = Retarded response

Commutation relations?

The solution: auxiliar degrees of freedom for matter

- We can make the theory local in time, if we explicitly include degrees of freedom that describe matter
- These can be ficticious: we only require that they reproduce $\epsilon(\omega)$

The solution: auxiliar degrees of freedom for matter

- We can make the theory local in time, if we explicitly include degrees of freedom that describe matter
- These can be ficticious: we only require that they reproduce $\epsilon(\omega)$

Example:

Hydrodynamic **conductivity of graphene**:

$$\boldsymbol{\sigma}_g(\omega, \mathbf{q}) = D \frac{i\omega}{\omega^2 - \beta^2 q^2} \frac{\mathbf{q} \otimes \mathbf{q}}{q^2} + D \frac{i}{\omega} \left(\mathbf{1} - \frac{\mathbf{q} \otimes \mathbf{q}}{q^2} \right)$$

The solution: auxiliar degrees of freedom for matter

- We can make the theory local in time, if we explicitly include degrees of freedom that describe matter
- These can be ficticious: we only require that they reproduce $\epsilon(\omega)$

Example:

Hydrodynamic conductivity of graphene:

$$\boldsymbol{\sigma}_g(\omega, \mathbf{q}) = D \frac{i\omega}{\omega^2 - \beta^2 q^2} \frac{\mathbf{q} \otimes \mathbf{q}}{q^2} + D \frac{i}{\omega} \left(\mathbf{1} - \frac{\mathbf{q} \otimes \mathbf{q}}{q^2} \right)$$

Same conductivity as for a **charged fluid** described by the Lagrangean:

$$\mathcal{L}_{\text{hyd}} = \frac{1}{2} n_0 m \left(\partial_t \boldsymbol{v}\right)^2 - \frac{1}{2} n_0 m \beta^2 \left(\nabla \cdot \boldsymbol{v}\right)^2 - e n_0 \partial_t \boldsymbol{v} \cdot \mathbf{A}$$

Current density: $\mathbf{J} = -en_0\partial_t \mathbf{v}$

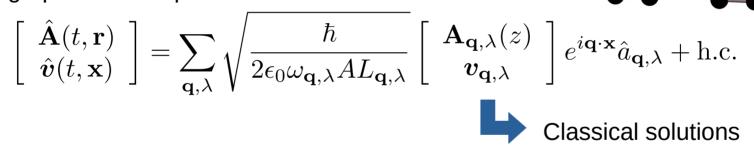
Drude weight: $D = e^2 n_0/m$

Quantization of EM field + matter

- The Hamiltonian for **EM field + matter** is **local in time**!
- System of "coupled harmonic oscillators" → quantization via standard methods

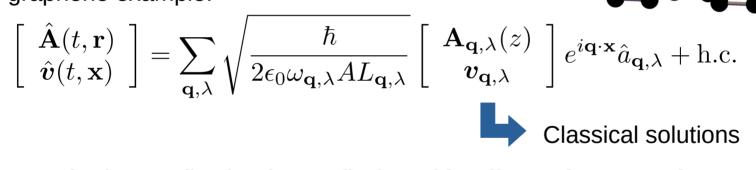
Quantization of EM field + matter

- The Hamiltonian for EM field + matter is local in time!
- System of "coupled harmonic oscillators" → quantization via standard methods
- For graphene example:



Quantization of EM field + matter

- The Hamiltonian for EM field + matter is local in time!
- System of "coupled harmonic oscillators" → quantization via standard methods
- For graphene example:



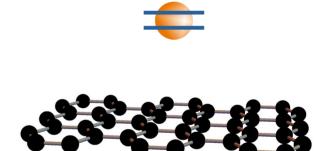
Non-standard normalization factor! (induced by dispersive matter)

$$L_{\mathbf{q},\lambda} = \int d^3 \mathbf{r} \mathbf{A}_{\mathbf{q},\lambda}^*(\mathbf{r}) \cdot \left[\boldsymbol{\epsilon}(\omega_{\mathbf{q},\lambda}, \mathbf{r}) + \omega_{\mathbf{q},\lambda}^2 \frac{\partial \boldsymbol{\epsilon}(\omega_{\mathbf{q},\lambda}, \mathbf{r})}{\partial (\omega^2)} \right] \cdot \mathbf{A}_{\mathbf{q},\lambda}(\mathbf{r})$$

General result! (ignoring losses)

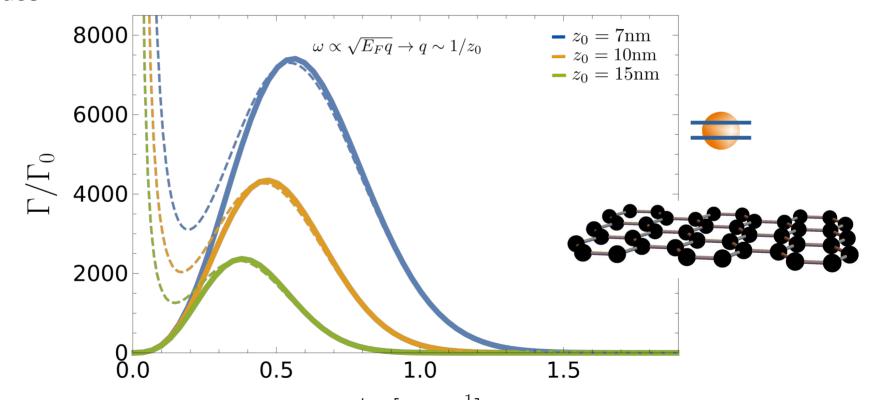
Application 1: Purcell effect due to emission of graphene plamons

 Purcell effect: decay rate of quantum emitter depends on local density of EM modes



Application 1: Purcell effect due to emission of graphene plamons

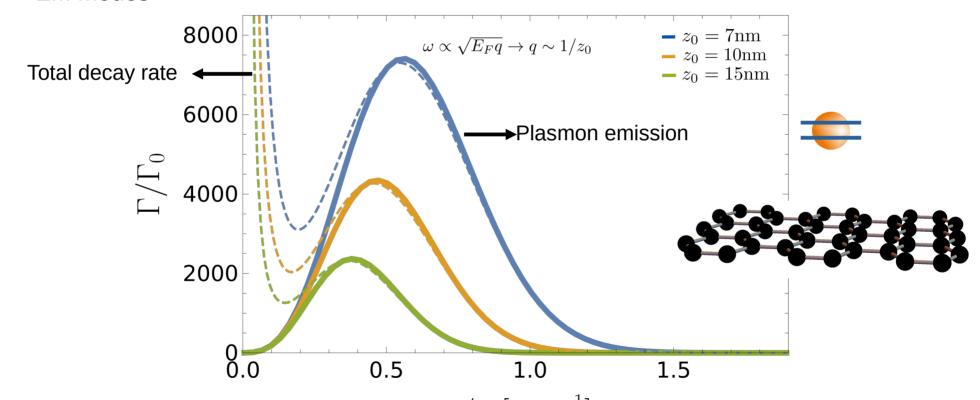
 Purcell effect: decay rate of quantum emitter depends on local density of EM modes



Beatriz A. Ferreira, B. Amorim, A. J. Chaves, N. M. R. Peres $\omega/c~[\mu m^{-1}]$ Phys. Rev. A 101, 033817 (2020)

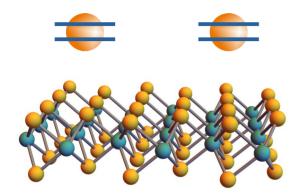
Application 1: Purcell effect due to emission of graphene plamons

 Purcell effect: decay rate of quantum emitter depends on local density of EM modes

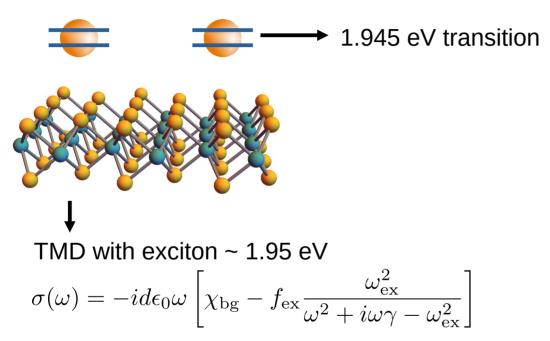


Beatriz A. Ferreira, B. Amorim, A. J. Chaves, N. M. R. Peres ω/c $[\mu m^{-1}]$ Phys. Rev. A 101, 033817 (2020)

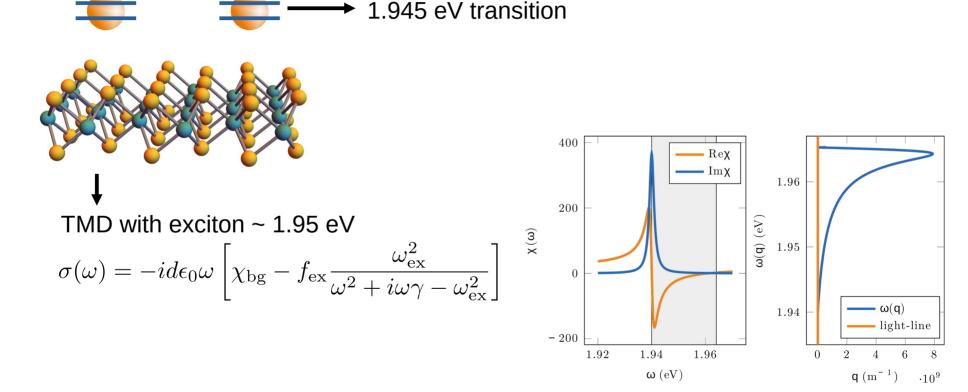
Nitrogen-vacancy color centers placed on top of TMD monolayer:



Nitrogen-vacancy color centers placed on top of TMD monolayer:



Nitrogen-vacancy color centers placed on top of TMD monolayer:



J. C. G. Henriques, B. Amorim, N. M. R. Peres Phys. Rev. B 103, 085407 (2021)

Dynamics for NV centers:

$$\frac{d\rho}{dt} = -\frac{i}{\hbar} \left[\frac{1}{2} \sum_{i=1}^{2} \left(\hbar \omega_0 + \Delta_i \right) \sigma_i^z + \sum_{i \neq j} g_{ij} \sigma_i^+ \sigma_j^-, \rho \right] + \frac{1}{\hbar} \sum_{ij} \gamma_{ij} \left(\sigma_j^- \rho \sigma_i^+ - \frac{1}{2} \left\{ \sigma_i^+ \sigma_j^-, \rho \right\} \right)$$

J. C. G. Henriques, B. Amorim, N. M. R. Peres Phys. Rev. B 103, 085407 (2021)

• Dynamics for NV centers:

$$\frac{d\rho}{dt} = -\frac{i}{\hbar} \left[\frac{1}{2} \sum_{i=1}^{2} \left(\hbar \omega_0 + \Delta_i \right) \sigma_i^z + \sum_{i \neq j} g_{ij} \sigma_i^+ \sigma_j^-, \rho \right] + \frac{1}{\hbar} \sum_{ij} \gamma_{ij} \left(\sigma_j^- \rho \sigma_i^+ - \frac{1}{2} \left\{ \sigma_i^+ \sigma_j^-, \rho \right\} \right)$$

$$\frac{d\rho}{dt} = -\frac{i}{\hbar} \left[\frac{1}{2} \sum_{i=1}^{2} \left(\hbar \omega_0 + \Delta_i \right) \sigma_i^z + \sum_{i \neq j} g_{ij} \sigma_i^+ \sigma_j^-, \rho \right] + \frac{1}{\hbar} \sum_{ij} \gamma_{ij} \left(\sigma_j^- \rho \sigma_i^+ - \frac{1}{2} \left\{ \sigma_i^+ \sigma_j^-, \rho \right\} \right)$$

$$\frac{d\rho}{dt} = -\frac{i}{\hbar} \left[\frac{1}{2} \sum_{i=1}^{2} \left(\hbar \omega_0 + \Delta_i \right) \sigma_i^z + \sum_{i \neq j} g_{ij} \sigma_i^+ \sigma_j^-, \rho \right] + \frac{1}{\hbar} \sum_{ij} \gamma_{ij} \left(\sigma_j^- \rho \sigma_i^+ - \frac{1}{2} \left\{ \sigma_i^+ \sigma_j^-, \rho \right\} \right)$$

$$\frac{d\rho}{dt} = -\frac{i}{\hbar} \left[\frac{1}{2} \sum_{i=1}^{2} \left(\hbar \omega_0 + \Delta_i \right) \sigma_i^z + \sum_{i \neq j} g_{ij} \sigma_i^+ \sigma_j^-, \rho \right]$$

$$\frac{d\rho}{dt} = -\frac{i}{\hbar} \left[\frac{1}{2} \sum_{i=1}^{2} \left(\hbar \omega_0 + \Delta_i \right) \sigma_i^z + \sum_{i \neq j} g_{ij} \sigma_i^+ \sigma_j^-, \rho \right]$$

$$\frac{d\rho}{dt} = -\frac{i}{\hbar} \left[\frac{1}{2} \sum_{i=1}^{2} \left(\hbar \omega_0 + \Delta_i \right) \sigma_i^z + \sum_{i \neq j} g_{ij} \sigma_i^+ \sigma_j^-, \rho \right]$$

$$\frac{d\rho}{dt} = -\frac{i}{\hbar} \left[\frac{1}{2} \sum_{i=1}^{2} \left(\hbar \omega_0 + \Delta_i \right) \sigma_i^z + \sum_{i \neq j} g_{ij} \sigma_i^+ \sigma_j^-, \rho \right]$$

$$\frac{d\rho}{dt} = -\frac{i}{\hbar} \left[\frac{1}{2} \sum_{i=1}^{2} \left(\hbar \omega_0 + \Delta_i \right) \sigma_i^z + \sum_{i \neq j} g_{ij} \sigma_i^+ \sigma_j^-, \rho \right]$$

$$\frac{d\rho}{dt} = -\frac{i}{\hbar} \left[\frac{1}{2} \sum_{i=1}^{2} \left(\hbar \omega_0 + \Delta_i \right) \sigma_i^z + \sum_{i \neq j} g_{ij} \sigma_i^+ \sigma_j^-, \rho \right]$$

$$\frac{d\rho}{dt} = -\frac{i}{\hbar} \left[\frac{1}{2} \sum_{i=1}^{2} \left(\hbar \omega_0 + \Delta_i \right) \sigma_i^z + \sum_{i \neq j} g_{ij} \sigma_i^+ \sigma_j^-, \rho \right]$$

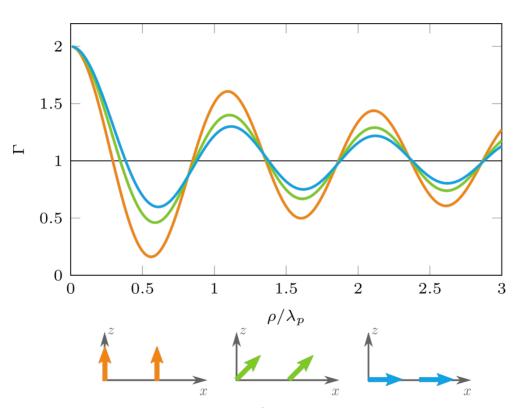
$$\frac{d\rho}{dt} = -\frac{i}{\hbar} \left[\frac{1}{2} \sum_{i=1}^{2} \left(\hbar \omega_0 + \Delta_i \right) \sigma_i^z + \sum_{i \neq j} g_{ij} \sigma_i^+ \sigma_j^-, \rho \right]$$

Phys. Rev. B 103, 085407 (2021)

=37 nm

• Superradiance if:

$$\Gamma = \frac{\gamma_{11} + \gamma_{22} + \gamma_{12} + \gamma_{21}}{\gamma_{11} + \gamma_{22}} > 1$$



Conclusions

- Canonical quantization of polaritons allows to extract polaritonic contribution from different quantum electrodynamic processes
- Method can be applied for different kinds of polaritons: plasmon-polaritons, exciton-polariton, phonon-polaritons
- Approach excludes material losses, but can be included in a perturbative way

Thank you for your attention

Extra 1: Mode normalization and response to external current

EM field generated by source current:

$$abla imes
abla imes
abla imes \mathbf{A}(\omega, \mathbf{r}) + rac{\omega^2}{c^2} \boldsymbol{\epsilon}(\omega) \mathbf{A}(\omega, \mathbf{r}) = \mu_0 \mathbf{J}(\omega, \mathbf{r})$$

• $\mathbf{J}(\omega, \mathbf{r})$ peaked at $\omega \simeq \omega_{\lambda}$

$$\nabla \times \nabla \times \mathbf{A}_{\lambda}(\mathbf{r}) + \frac{\omega_{\lambda}^{2}}{c^{2}} \boldsymbol{\epsilon}(\omega_{\lambda}) \mathbf{A}_{\lambda}(\mathbf{r}) = 0$$

• If we look for solution of the form $\mathbf{A}(\omega,\mathbf{r}) \propto \mathbf{A}_{\lambda}(\mathbf{r})$

$$\mathbf{A}(\omega, \mathbf{r}) \simeq \int d^3 \mathbf{r}' \frac{1}{\epsilon_0 L_{\lambda}} \frac{\mathbf{A}_{\lambda}(\mathbf{r}) \mathbf{A}_{\lambda}^*(\mathbf{r}')}{\omega^2 - \omega_{\lambda}^2} \mathbf{J}(\omega, \mathbf{r}')$$

$$L_{\lambda} = \int d^{3}\mathbf{r}' \mathbf{A}_{\lambda}^{*}(\mathbf{r}') \left[\boldsymbol{\epsilon}(\omega_{\lambda}) + \omega_{\lambda}^{2} \frac{\partial \boldsymbol{\epsilon}(\omega_{\lambda})}{\partial (\omega^{2})} \right] \mathbf{A}_{\lambda}(\mathbf{r}')$$

Extra 2: Lindblad equation

$$\frac{\partial \rho(t)}{\partial t} = -\frac{i}{\hbar} \left[\sum_{i} \frac{1}{2} \left(\epsilon_{0} + \Delta_{i} \right) \sigma_{i}^{z} + \sum_{i \neq j} g_{ij} \sigma_{i}^{+} \sigma_{j}^{-}, \rho(t) \right]
+ \frac{1}{\hbar} \sum_{i,j} \gamma_{ij} \left(\sigma_{j}^{-} \rho(t) \sigma_{i}^{+} - \frac{1}{2} \left\{ \sigma_{i}^{+} \sigma_{j}^{-}, \rho(t) \right\} \right)
+ \frac{1}{\hbar} \sum_{i,j} \tilde{\gamma}_{ij} \left(\sigma_{j}^{+} \rho(t) \sigma_{i}^{-} - \frac{1}{2} \left\{ \sigma_{i}^{-} \sigma_{j}^{+}, \rho(t) \right\} \right)
\Delta_{i} = P \int \frac{d\nu}{2\pi} \left[1 + 2b(\nu) \right] \frac{\mu_{i,\alpha}^{*} A_{\alpha\beta} \left(\nu; \mathbf{r}_{i}, \mathbf{r}_{i} \right) \mu_{i,\beta}}{\omega_{0} - \nu}
g_{ij} = \mu_{i,\alpha}^{*} D_{\alpha\beta} (\omega_{0}; \mathbf{r}_{i}, \mathbf{r}_{j}) \mu_{j,\beta},
\gamma_{ij} = \left[1 + b(\omega_{0}) \right] \mu_{i,\alpha}^{*} A_{\alpha\beta} \left(\omega_{0}; \mathbf{r}_{i}, \mathbf{r}_{j} \right) \mu_{j,\beta},
\tilde{\gamma}_{ij} = b(\omega_{0}) \mu_{j,\alpha}^{*} A_{\alpha\beta} \left(\omega_{0}; \mathbf{r}_{j}, \mathbf{r}_{i} \right) \mu_{i,\beta},
D_{\alpha\beta}^{R} (\omega; \mathbf{r}_{i}, \mathbf{r}_{j}) = D_{\alpha\beta} (\omega; \mathbf{r}_{i}, \mathbf{r}_{j}) - \frac{i}{2} A_{\alpha\beta} (\omega; \mathbf{r}_{i}, \mathbf{r}_{j})$$