Quantum electrodynamics with polaritons in 2D materials

Bruno Amorim

CF-UM-UP, University of Minho
in collaboration with
B. A. Ferreira, J. C. G. Henriques, A. J. Chaves, N. M. R. Peres

Quantum polaritons

- Description of light-matter interactions at the nanoscale requires quantization of Eletromagnetic (EM) field
- Polaritons: quasi-particles resulting from hydridization between photons and matter excitations
- EM Dyadic Green's function:
- Includes quantum effects
- Muddles physical interpretation X

Quantum polaritons

- Description of light-matter interactions at the nanoscale requires quantization of Eletromagnetic (EM) field
- Polaritons: quasi-particles resulting from hydridization between photons and matter excitations
- EM Dyadic Green's function:
- Includes quantum effects
- Muddles physical interpretation X
- What we want:

Quantum description of polaritonic modes

The problem: quantization of EM field in dispersive media

- Canonical quantization of EM field in static dielectric media, poses no problem.
- Hamiltonian in the Weyl gauge $(\phi=0)$:

$$
H_{\mathrm{EM}}=\int d^{3} \mathbf{r}\left(\frac{1}{2 \epsilon_{0}} \boldsymbol{\Pi} \cdot \boldsymbol{\epsilon}^{-1} \cdot \boldsymbol{\Pi}+\frac{1}{2 \mu_{0}}(\nabla \times \mathbf{A})^{2}\right)
$$

$$
\boldsymbol{\Pi}=\epsilon_{0} \boldsymbol{\epsilon} \partial_{t} \mathbf{A}
$$

The problem: quantization of EM field in dispersive media

- Canonical quantization of EM field in static dielectric media, poses no problem.
- Hamiltonian in the Weyl gauge $(\phi=0)$:

$$
H_{\mathrm{EM}}=\int d^{3} \mathbf{r}\left(\frac{1}{2 \epsilon_{0}} \boldsymbol{\Pi} \cdot \boldsymbol{\epsilon}^{-1} \cdot \boldsymbol{\Pi}+\frac{1}{2 \mu_{0}}(\nabla \times \mathbf{A})^{2}\right)
$$

$$
\boldsymbol{\Pi}=\epsilon_{0} \boldsymbol{\epsilon} \partial_{t} \mathbf{A}
$$

- A problem occurs when we try to include dispersion $\boldsymbol{\epsilon} \rightarrow \boldsymbol{\epsilon}(\omega)$

$$
\mathbf{P}(\omega)=\epsilon_{0} \boldsymbol{\chi}(\omega) \mathbf{E}(\omega)
$$

The problem: quantization of EM field in dispersive media

- Canonical quantization of EM field in static dielectric media, poses no problem.
- Hamiltonian in the Weyl gauge $(\phi=0)$:

$$
H_{\mathrm{EM}}=\int d^{3} \mathbf{r}\left(\frac{1}{2 \epsilon_{0}} \boldsymbol{\Pi} \cdot \boldsymbol{\epsilon}^{-1} \cdot \boldsymbol{\Pi}+\frac{1}{2 \mu_{0}}(\nabla \times \mathbf{A})^{2}\right)
$$

$$
\boldsymbol{\Pi}=\epsilon_{0} \boldsymbol{\epsilon} \partial_{t} \mathbf{A}
$$

- A problem occurs when we try to include dispersion $\boldsymbol{\epsilon} \rightarrow \boldsymbol{\epsilon}(\omega)$

$$
\mathbf{P}(\omega)=\epsilon_{0} \boldsymbol{\chi}(\omega) \mathbf{E}(\omega) \quad \mathbf{P}(t)=\epsilon_{0} \int d t^{\prime} \boldsymbol{\chi}\left(t, t^{\prime}\right) \mathbf{E}\left(t^{\prime}\right)
$$

Dispersion = Retarded response

The solution: auxiliar degrees of freedom for matter

- We can make the theory local in time, if we explicitly include degrees of freedom that describe matter
- These can be ficticious: we only require that they reproduce $\boldsymbol{\epsilon}(\omega)$

The solution: auxiliar degrees of freedom for matter

- We can make the theory local in time, if we explicitly include degrees of freedom that describe matter
- These can be ficticious: we only require that they reproduce $\epsilon(\omega)$

Example:

Hydrodynamic conductivity of graphene:

$$
\boldsymbol{\sigma}_{g}(\omega, \mathbf{q})=D \frac{i \omega}{\omega^{2}-\beta^{2} q^{2}} \frac{\mathbf{q} \otimes \mathbf{q}}{q^{2}}+D \frac{i}{\omega}\left(\mathbf{1}-\frac{\mathbf{q} \otimes \mathbf{q}}{q^{2}}\right)
$$

The solution: auxiliar degrees of freedom for matter

- We can make the theory local in time, if we explicitly include degrees of freedom that describe matter
- These can be ficticious: we only require that they reproduce $\epsilon(\omega)$

Example:

Hydrodynamic conductivity of graphene:

$$
\boldsymbol{\sigma}_{g}(\omega, \mathbf{q})=D \frac{i \omega}{\omega^{2}-\beta^{2} q^{2}} \frac{\mathbf{q} \otimes \mathbf{q}}{q^{2}}+D \frac{i}{\omega}\left(\mathbf{1}-\frac{\mathbf{q} \otimes \mathbf{q}}{q^{2}}\right)
$$

Same conductivity as for a charged fluid described by the Lagrangean:

$$
\mathcal{L}_{\mathrm{hyd}}=\frac{1}{2} n_{0} m\left(\partial_{t} \boldsymbol{v}\right)^{2}-\frac{1}{2} n_{0} m \beta^{2}(\nabla \cdot \boldsymbol{v})^{2}-e n_{0} \partial_{t} \boldsymbol{v} \cdot \mathbf{A}
$$

Current density: $\mathbf{J}=-e n_{0} \partial_{t} \boldsymbol{v}$
Drude weight: $\quad D=e^{2} n_{0} / m$

Quantization of EM field + matter

- The Hamiltonian for EM field + matter is local in time!
- System of "coupled harmonic oscillators" \rightarrow quantization via standard methods

Quantization of EM field + matter

- The Hamiltonian for EM field + matter is local in time!
- System of "coupled harmonic oscillators" \rightarrow quantization via standard methods
- For graphene example:

$$
\left[\begin{array}{c}
\hat{\mathbf{A}}(t, \mathbf{r}) \\
\hat{\boldsymbol{v}}(t, \mathbf{x})
\end{array}\right]=\sum_{\mathbf{q}, \lambda} \sqrt{\frac{\hbar}{2 \epsilon_{0} \omega_{\mathbf{q}, \lambda} A L_{\mathbf{q}, \lambda}}\left[\begin{array}{c}
\mathbf{A}_{\mathbf{q}, \lambda}(z) \\
\boldsymbol{v}_{\mathbf{q}, \lambda}
\end{array}\right] e^{i \mathbf{q} \cdot \mathbf{x}_{\hat{a}_{\mathbf{q}, \lambda}}+\text { h.c. }}} \begin{array}{r}
\\
\text { Classical solutions }
\end{array}
$$

Quantization of EM field + matter

- The Hamiltonian for EM field + matter is local in time!
- System of "coupled harmonic oscillators" \rightarrow quantization via standard methods
- For graphene example:

$$
\left[\begin{array}{r}
\hat{\mathbf{A}}(t, \mathbf{r}) \\
\hat{\boldsymbol{v}}(t, \mathbf{x})
\end{array}\right]=\sum_{\mathbf{q}, \lambda} \sqrt{\frac{\hbar}{2 \epsilon_{0} \omega_{\mathbf{q}, \lambda} A L_{\mathbf{q}, \lambda}}\left[\begin{array}{c}
\mathbf{A}_{\mathbf{q}, \lambda}(z) \\
\boldsymbol{v}_{\mathbf{q}, \lambda}
\end{array}\right] e^{i \mathbf{q} \cdot \mathbf{x}_{\hat{a}_{\mathbf{q}, \lambda}}+\text { h.c. }}} \begin{array}{r}
\\
\text { Classical solutions }
\end{array}
$$

- Non-standard normalization factor! (induced by dispersive matter)

$$
L_{\mathbf{q}, \lambda}=\int d^{3} \mathbf{r} \mathbf{A}_{\mathbf{q}, \lambda}^{*}(\mathbf{r}) \cdot\left[\boldsymbol{\epsilon}\left(\omega_{\mathbf{q}, \lambda}, \mathbf{r}\right)+\omega_{\mathbf{q}, \lambda}^{2} \frac{\partial \boldsymbol{\epsilon}\left(\omega_{\mathbf{q}, \lambda}, \mathbf{r}\right)}{\partial\left(\omega^{2}\right)}\right] \cdot \mathbf{A}_{\mathbf{q}, \lambda}(\mathbf{r})
$$

Application 1: Purcell effect due to emission of graphene plamons

- Purcell effect: decay rate of quantum emitter depends on local density of EM modes

Application 1: Purcell effect due to emission of graphene plamons

- Purcell effect: decay rate of quantum emitter depends on local density of EM modes

Beatriz A. Ferreira, B. Amorim, A. J. Chaves, N. M. R. Peres $\omega / c\left[\mu m^{-1}\right]$

Application 1: Purcell effect due to emission of graphene plamons

- Purcell effect: decay rate of quantum emitter depends on local density of EM modes

Beatriz A. Ferreira, B. Amorim, A. J. Chaves, N. M. R. Peres $\omega / c\left[\mu m^{-1}\right]$

Application 2: superradiance mediated by exciton-polaritons in TMDs

- Nitrogen-vacancy color centers placed on top of TMD monolayer:

Application 2: superradiance mediated by exciton-polaritons in TMDs

- Nitrogen-vacancy color centers placed on top of TMD monolayer:

Application 2: superradiance mediated by exciton-polaritons in TMDs

- Nitrogen-vacancy color centers placed on top of TMD monolayer:

J. C. G. Henriques, B. Amorim, N. M. R. Peres Phys. Rev. B 103, 085407 (2021)

Application 2: superradiance mediated by exciton-polaritons in TMDs

- Dynamics for NV centers:

$$
\frac{d \rho}{d t}=-\frac{i}{\hbar}\left[\frac{1}{2} \sum_{i=1}^{2}\left(\hbar \omega_{0}+\Delta_{i}\right) \sigma_{i}^{z}+\sum_{i \neq j} g_{i j} \sigma_{i}^{+} \sigma_{j}^{-}, \rho\right]+\frac{1}{\hbar} \sum_{i j} \gamma_{i j}\left(\sigma_{j}^{-} \rho \sigma_{i}^{+}-\frac{1}{2}\left\{\sigma_{i}^{+} \sigma_{j}^{-}, \rho\right\}\right)
$$

Application 2: superradiance mediated by exciton-polaritons in TMDs

- Dynamics for NV centers:

$$
\frac{d \rho}{d t}=-\frac{i}{\hbar}\left[\frac{1}{2} \sum_{i=1}^{2}\left(\hbar \omega_{0}+\Delta_{i}\right) \sigma_{i}^{z}+\sum_{i \neq j \mathrm{~b}} g_{i j} \sigma_{i}^{+} \sigma_{j}^{-}, \rho\right]+\frac{1}{\hbar} \sum_{i j \mathrm{c}} \gamma_{i j}\left(\sigma_{j}^{-} \rho \sigma_{i}^{+}-\frac{1}{2}\left\{\sigma_{i}^{+} \sigma_{j}^{-}, \rho\right\}\right)
$$

$$
\lambda_{p}=37 \mathrm{~nm}
$$

Application 2: superradiance mediated by exciton-polaritons in TMDs

- Superradiance if:

$$
\Gamma=\frac{\gamma_{11}+\gamma_{22}+\gamma_{12}+\gamma_{21}}{\gamma_{11}+\gamma_{22}}>1
$$

Enhanced emission radiation for seperations $\simeq n \lambda_{p}$

Conclusions

- Canonical quantization of polaritons allows to extract polaritonic contribution from different quantum electrodynamic processes
- Method can be applied for different kinds of polaritons: plasmon-polaritons, exciton-polariton, phonon-polaritons
- Approach excludes material losses, but can be included in a perturbative way

Thank you for your attention

Extra 1: Mode normalization and response to external current

- EM field generated by source current:

$$
\nabla \times \nabla \times \mathbf{A}(\omega, \mathbf{r})+\frac{\omega^{2}}{c^{2}} \boldsymbol{\epsilon}(\omega) \mathbf{A}(\omega, \mathbf{r})=\mu_{0} \mathbf{J}(\omega, \mathbf{r})
$$

- J $\omega(\omega, \mathbf{r})$ peaked at $\omega \simeq \omega_{\lambda}$

$$
\nabla \times \nabla \times \mathbf{A}_{\lambda}(\mathbf{r})+\frac{\omega_{\lambda}^{2}}{c^{2}} \boldsymbol{\epsilon}\left(\omega_{\lambda}\right) \mathbf{A}_{\lambda}(\mathbf{r})=0
$$

- If we look for solution of the form $\mathbf{A}(\omega, \mathbf{r}) \propto \mathbf{A}_{\lambda}(\mathbf{r})$

$$
\begin{gathered}
\mathbf{A}(\omega, \mathbf{r}) \simeq \int d^{3} \mathbf{r}^{\prime} \frac{1}{\epsilon_{0} L_{\lambda}} \frac{\mathbf{A}_{\lambda}(\mathbf{r}) \mathbf{A}_{\lambda}^{*}\left(\mathbf{r}^{\prime}\right)}{\omega^{2}-\omega_{\lambda}^{2}} \mathbf{J}\left(\omega, \mathbf{r}^{\prime}\right) \\
L_{\lambda}=\int d^{3} \mathbf{r}^{\prime} \mathbf{A}_{\lambda}^{*}\left(\mathbf{r}^{\prime}\right)\left[\boldsymbol{\epsilon}\left(\omega_{\lambda}\right)+\omega_{\lambda}^{2} \frac{\partial \boldsymbol{\epsilon}\left(\omega_{\lambda}\right)}{\partial\left(\omega^{2}\right)}\right] \mathbf{A}_{\lambda}\left(\mathbf{r}^{\prime}\right)
\end{gathered}
$$

Extra 2: Lindblad equation

$$
\begin{aligned}
\frac{\partial \rho(t)}{\partial t}= & -\frac{i}{\hbar}\left[\sum_{i} \frac{1}{2}\left(\epsilon_{0}+\Delta_{i}\right) \sigma_{i}^{z}+\sum_{i \neq j} g_{i j} \sigma_{i}^{+} \sigma_{j}^{-}, \rho(t)\right] \\
+ & \frac{1}{\hbar} \sum_{i, j} \gamma_{i j}\left(\sigma_{j}^{-} \rho(t) \sigma_{i}^{+}-\frac{1}{2}\left\{\sigma_{i}^{+} \sigma_{j}^{-}, \rho(t)\right\}\right) \\
+ & \frac{1}{\hbar} \sum_{i, j} \tilde{\gamma}_{i j}\left(\sigma_{j}^{+} \rho(t) \sigma_{i}^{-}-\frac{1}{2}\left\{\sigma_{i}^{-} \sigma_{j}^{+}, \rho(t)\right\}\right) \\
\Delta_{i}= & P \int \frac{d \nu}{2 \pi}[1+2 b(\nu)] \frac{\mu_{i, \alpha}^{*} A_{\alpha \beta}\left(\nu ; \mathbf{r}_{i}, \mathbf{r}_{i}\right) \mu_{i, \beta}}{\omega_{0}-\nu} \\
g_{i j}= & \mu_{i, \alpha}^{*} D_{\alpha \beta}\left(\omega_{0} ; \mathbf{r}_{i}, \mathbf{r}_{j}\right) \mu_{j, \beta}, \\
\gamma_{i j}= & {\left[1+b\left(\omega_{0}\right)\right] \mu_{i, \alpha}^{*} A_{\alpha \beta}\left(\omega_{0} ; \mathbf{r}_{i}, \mathbf{r}_{j}\right) \mu_{j, \beta}, } \\
\tilde{\gamma}_{i j}= & b\left(\omega_{0}\right) \mu_{j, \alpha}^{*} A_{\alpha \beta}\left(\omega_{0} ; \mathbf{r}_{j}, \mathbf{r}_{i}\right) \mu_{i, \beta}, \\
& D_{\alpha \beta}^{R}\left(\omega ; \mathbf{r}_{i}, \mathbf{r}_{j}\right)=D_{\alpha \beta}\left(\omega ; \mathbf{r}_{i}, \mathbf{r}_{j}\right)-\frac{i}{2} A_{\alpha \beta}\left(\omega ; \mathbf{r}_{i}, \mathbf{r}_{j}\right)
\end{aligned}
$$

