Comparisons of ERLC and ILC focusing on AC Power and Costs

Akira Yamamoto and Kaoru Yokoya

In cooperation with Sergey Belomestnkh

Acknowledgements to:

C. Adolphsen (SLAC), G. Burt (CockCroft), F. Gerigk (CERN), E. Kako, S. Michizono (KEK), and B. Rimmer (JLab), for fruitful discussions and thoughtful advices.

Outline

- Overview
- General Comparisons
- How to compare Thermal Loads?
 - RF dynamic thermal load to Cryogenics
 - HOM absorption, thermal load to Cryogenics
- AC (wall-plug) Power Comparison of ERLC with ILC
 - Some examines to seek for minimizing AC (wall-plug) power
- Cost comparison of ERLC with ILC
- Further questions and issues to be settled

Overview

- ERLC requires significant AC (wall-plug) power consumption mainly for cryogenics loaded by RF dynamic loss because of RF voltage and HOM load because of beam current, under CW mode, even though the duty factor limited to 1/3. It is un-acceptably high, if the CM and HOM absorption design as similar as that of ILC.
- To significantly reduce the AC power, ERLC-CM designs needs to be based on:
 - Efficient CM design with twin aperture SRF cavities in common Cryomodules.
 - HOM loads extracted directly to much higher temperature (~50 ~ 100K)
 - HOM absorber/dumper at each cavity end (instead of each CM end)
 - It results in longer CM and and ML lengths, and additional cost.
- The design with reduced <u>N per bunch (and/or increased bunch distance</u>) and a <u>full CW mode</u> (DF=1) remains as a possibility for the proposal to be more practical, with the luminosity to be reasonably compromised.
- The construction cost would be relatively much higher than that estimated to ILC.
- Long term development will be necessary to demonstrate and establish the technology for the project realization: twin aperture cavity, frequent HOM load extraction, thermal & cryogenics design optimization, and others. 3

ERLC and **ILC**

Table 2. Parameters of e^+e^- linear colliders ERLC and ILC.

	unit	ERLC	ILC	
Energy $2E_0$	GeV	250	250	
Luminosity \mathcal{L}_{tot}	$10^{34}{ m cm}^{-2}{ m s}^{-1}$	48	0.75	• 1.35
Duty cycle		1/3		
Accel. gradient, G	MV/m	20	31.5	
Cavity quality, Q	10^{10}	3	1	
Length $L_{\rm act}/L_{\rm tot}$	km	12.5/22	8/20	
P (wall)	MW	~ 130	128	▶ 110
N per bunch	10^{10}	0.5	2	
Bunch distance	m	1.5	166	
Rep. rate, f	Hz	2×10^8	6560	
Norm. emit., $\epsilon_{x,n}$	$10^{-6} {\rm m}$	20	10	
Norm. emit., $\epsilon_{y,n}$	10 ⁻⁶ m	0.035	0.035	
β_x^* at IP	cm	25	1.3	
β_y at IP	cm	0.03	0.04	
σ_x at IP	$\mu \mathrm{m}$	4.5	0.73	
σ_y at IP	nm	6.1	7.7	
σ_z at IP	cm	0.03	0.03	
σ_E/E_0 at IP	%	0.2	~ 1	

ILC parameters most updated

Z–Pole Z–Pole 500GeV 500GeV TeV Higgs Higgs Higgs Lum Up um Up L Up,10Hz Baseline Lum Up case B reference (a) (a) (b) (b) (b)(d) (c) (c) (c) Center-of-Mass Energy 250 250 250 500 500 1000 GeV 91.2 91.2 E_{CM} 125 125 125 250 250 500 Beam Energy Ebeam GeV 45.6 45.6 3.7 3.7 5 5 10 5 Collision rate Hz 5 fcol 5 10 5 Electron linac rep.rate Hz 3.7+3.7 3.7+3.7 5 5 Pluse interval in electron main linac ms 135 135 200 200 100 200 200 200 Electron energy for e+ production GeV 125 125 125 125 125 250 250 500 2625 2450 2625 2625 2625 Number of bunches n_b 1312 1312 1312 10¹⁰ Bunch population N 2 2 2 2 2 2 1.737 -Bunch separation Δt_b 554 554 554 366 366 554 366 366 ns 5,79 5,79 5.79 8.75 8,75 5,79 8,75 7,60 Beam current mA Average beam power at IP (2 beams) PB 10.5 10.5 27.3 MW 1.42 2.84 5.26 21.0 21.0 RMS bunch length at ML & IP σ_z 0.41 0.41 0.30 0.30 0.30 0.30 0.30 0.225 mm RMS electron energy spread at IP 0.30 0.30 0.188 0.188 0.188 0.124 0.124 0.085 σ_p/p % 0.070 RMS positron energy spread at IP $\sigma_{\rm p}/{\rm p}$ % 0.30 0.30 0.150 0.150 0.150 0.070 0.043 P_ 80,000 Electron polarization % 80 80 80 80 80 80 80 P. % 30 30 30 30 30 30 30.000 Positron polarization 30 $\gamma \epsilon^{DR}$ Emittance from DR (x) 4.0 4.0 4.0 4.0 4.0 4.0 4.0 4.0 μm $\gamma \epsilon^{DR}$ Emittance from DR (y) 20.0 20.0 20.0 20.0 20.0 20.0 20.0 20.0 nm Emittance at main linac end (x) γε^{*}. 5.0 5.0 5.0 5.0 5.0 μm Emittance at main linac end (y) YE . 35.0 35.0 30.0 30.0 30.0 nm μm Emittance at IP (x) γε*x 6.2 6.2 5.0 5.0 5.0 10.0 10.0 10.0 Emittance at IP (v) YE* 48.5 48.5 35.0 35.0 35.0 35.0 35.0 30.0 nm β*. Beta x at IP 18 18 13 13 mm 13 11 11 11 B*. Beta y at IP mm 0,39 0,39 0,41 0,41 0,41 0,48 0,48 0,23 Beam size at IP (x) σ. 1,118 1,118 0.515 0.515 0.515 0.474 0,474 0,335 μm Beam size at IP (y) σ. 14.56 7.66 7.66 7.66 5.86 5.86 14.56 2.66 nm Disruption Param (x) Dx 0.41 0,41 0,52 0,52 0,52 0,31 0,31 0,20 Disruption Param (v) 35.0 24.9 25.3 Dy 31.8 31.8 35.0 35.0 24.9 0,003 0,028 0,028 0,028 0,062 0,203 Average Upsilon parameter 0,003 0,062 Yav $10^{34}/cm^{2}/s$ 0.095 0,190 0.529 1,058 2,116 0,751 1,504 2,64 Geometric luminosity Lgeo $10^{34}/cm^2/s$ L 0.205 0.410 2.70 5.40 1.79 3.60 4.66 Luminosity 1.35 HD 2,16 2,16 2,55 2.55 2,55 2,38 2,39 1,76 Luminosity enhancement factor Luminosity at top 1% 94 99.0 99.0 74 74 74 58 58 45 0.841 0.841 1.91 1.91 1.91 1.82 1.82 2.05 Number of beamstrahlung photons n., Beamstrahlung energy loss δ_{BS} % 0.157 0.157 2.62 2.62 2.62 4.5 4.5 10.5 2021/8 AC power MW ??? 111 138 198 173 215 300

https://arxiv.org/abs/1711.00568

6

AC Wall-Plug **Power** of ERLC and ILC

AC Power Summary:		ERLC as proposed by V.T.	ERLC w/ missing AC added		ILC
SRF frequency	GHz	1.3	1.3		
e- Source total	MW	25	2.5		4.9
e+ Source total	MW	2.0	2.5		9.3
DR / Radiation in Wiggler	MW	5.3	5.3		14.2
RTML	MW	5.0	0.0		10.4
ML total	MW	122	139		49
RF for Beam Acc.		30	30.0	24	4.4
Cryog (RF, other load)		92.0	92.0	14	4.1
(Cryog (HOM)		0.0	0.0	1.	.3
CF-Utilities			16.5	1(0.5
BDS	MW		9.3		9.3
Dumps	MW		0.0		1.2
AC Power Accelerator	MW	130	156		98
IR/MDI	MW		5.8		5.8
Main Campus	MW		2.7		2.7
General Margin	MW		3.3		3.3
Total AC Power	MW		<u>167</u>		<u>110</u>

Outline

- Overview
- General Comparisons
- How to compare Power Consumption?
 - RF dynamic thermal load to Cryogenics
 - HOM absorption, thermal load to Cryogenics
- AC (wall-plug) Power Comparison of ERLC with ILC
 - Some examines to seek for minimizing AC (wall-plug) power
- Cost comparison of ERLC with ILC
- Further questions and issues to be studied

How to compare the ERLC and ILC ?

Convenient Relations:

Luminosity: $\propto N x DF$

(if N/sig-x = const)

HOM:
$$\propto N^2/d x L_{act}$$
 or $N x < Iav > x L_{act}$
 $\propto 1/a^2$

 $P_{-RF-LOSS} = V^2 / \{ (R/Q) Q_0 \}$

$$P_{diss} = \frac{V_{\rm acc}^2}{(R/Q)/Q_0},$$

Eq. 6.1 in Telnov's report:

 $P_{-HOM} = \{265/d \ [m]\} \ x \ (N/10^{10})^2 \ x \ (L-act \ /25 \ (km/km)) \ [MW]$

$$P_{\rm HOM} = \frac{265}{d[\rm m]} \left(\frac{N}{10^{10}}\right)^2 \,\,{\rm MW}.$$

Eq. 5.3 in Telnov's report

2021/8/4

DF: Duty factor N: # particle / bunch d: bunch separation distance [m] L-act: Active Accelerator Length [m] a: Cavity Aperture Radius [mm] G: Acc. Gradient [MV/m] R/Q: Shunt impedance (1035 Ω at 1.3 GHz elliptical) E: Voltage [MV] Q₀: Quality Factor

Comparisons of ERLC and ILC

RF Dynamic Loss for Cryogenics:

 $P_{RF-loss} = \frac{V^2}{\{(R/Q) Q_o\}} x L$

• $\{P_{RF-ERLC} / P_{RF-ILC}\} = \sim 18.5$

Comparisons of ERLC and ILC

HOM Loss Thermal Load for Cryogenics :

 $P_{-HOM-loss} = \{265/d\} x \{N/10^{10}\}^2 x \{L-act/25\} (km/km)\}$ [MW]

• $P_{-HOM-ERLC} = \{265/1.5\} \times \{0.5e10/1e10\}^2 (25/25) = 44.2 \text{ MW}$

→ 44.2 MW x 1/3 = 14.7 MW at DF = 1/3

→ 14.7 x $\langle TE^{-1} \rangle$ = 1,235 MW at $\langle TE^{-1} \rangle$ = \sim 84 (1.8, 6, 50, (RT), distributed, as same as ILC (CM)

= 191 MW at < TE⁻¹> = \sim 13, if HOM load extracted to 80 K, (RT) as similar as CBETA (MLC)

•
$$P_{-HOM-ILC} = \{265/166\} \times \{2e10/1e10\}^2 \times (7.94/25) = 2.03 \text{ MW}$$

 $\rightarrow 2.03 \times 0.00364 = 7.4 \text{ kW}$ at DF = 0.000726 ms x 5Hz
 $\rightarrow 7.4 \times \langle \text{TE}^{-1} \rangle \ast = 620 \text{ kW}$ at $\langle \text{TE}^{-1} \rangle = \sim 84$, if HOM load extracted to 1.8, 6, 50, (RT), distributed as same as ILC (CM)
 $= 96 \text{ kW}$ at $\langle \text{TE}^{-1} \rangle = \sim 13$, if HOM load extracted to 80 K, (RT) as similar as CBETA (MLC)
 $\ast \text{TE}^{-1} \rangle \Rightarrow 4 \text{ Averaged Thermal Efficiency}$ (Correct were here is a first of the same integral of first of the same is a first of the same integral of first of the same is a first of t

*note: $\langle TE^{-1} \rangle$: Averaged Thermal Efficiency (Carnot x mechanical eff.) :

• $\{P_{-HOM-ERLC} / P_{-HOM-ILC}\} = \sim 2,000$

Outline

- General Comparisons
- How to compare Power Consumption?
 - RF dynamic thermal load to Cryogenics
 - HOM absorption, thermal load to Cryogenics
- AC (wall-plug) Power Comparison of ERLC with ILC
 - Some examines to seek for minimizing AC (wall-plug) power
- Cost comparison of ERLC with ILC
- Further questions and issues to be studied

1 . 1			
le 3.1	Cavity (nine-cell TESLA elliptical shape)		
the SCRE Main Linace	Average accelerating gradient	31.5	MV/m
500 CoV contro of mass	Quality factor Q_0	10^{10}	
source centre-or-mass-	Effective length	1.038	m
rgy operation. Where	R/Q	1036	Ω
tron linacs differ, the	Accepted operational gradient spread	±20%	
tron parameters are given	Crvomodule		
arenthesis.	Total slot length	12.652	m
	Type A	9 cavities	
	Type B	8 cavities	1 SC guad package
	.,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	o currence	T o o dana basingo
	ML unit (half FODO cell)	282 (285)	units
	(Type A - Type B - Type A)		
	Total component counts		
	Cryomodule Type A	564 (570)	
	Cryomodule Type B	282 (285)	
	Nine-cell cavities	7332 (7410)	
	SC quadrupole package	282 (285)	
	Total linac length – flat top.	11027 (11141)	m
	Total linac length – mountain top.	11072 (11188)	m
	Effective average accelerating gradient	21.3	MV/m
	0 0 0		
	RF requirements (for average gradient)		
	Beam current	5.8	mA
	beam (peak) power per cavity	190	kW
	Matched loaded $Q(Q_L)$	5.4×10^{6}	
	Cavity fill time	924	μs
	Beam pulse length	727	μs
	Total RF pulse length	1650	us
	RF-beam power efficiency	44%	
	1		

Tab

Sum for for ener para elect elect in pa

Heat loads of ILC CM from TDR

RF load (2K): 8.02 W HOM load (2K): 0.12+0.01+0.39+0.56 = 1.08 W

2021/8/4

14

ILC CM Thermal Load: Overall and HOM

Overall /CM	Unit	Heat Load				SUM
Parameter		at 2K, [W]	at 5-8 K[W]	at 40 - 80 K [W}	(RT)	
Overall	W /module	11.11	15.87	133.84		161
Thermal eff. Invserse		(790)	(208)	(21)		
(conversion)		(300/2/0.19)	(300/6/0.24)	(300/50/0.28)		
Corresp, AC Power (@RT)/CM	W / mocule	8777	3301	2811		14,889 (- ~5%)
Total, AC Power for 886 CM	MW/900 CM					<u>13.2</u>
						15.3 include. margin
						Correction { -5%}:
HOM / CM	Unit	Heat Load				SUM
Parameter		at 2K, [W]	at 5-8 K[W]	at 40 - 80 K [W}	(RT)	
HOM related	W /module	1.08 / 2	1.53 / 2	12.89 / 2	(1,83 <mark>/ 2</mark>)	15.5 <mark>/ 2</mark>
Thermal eff. Invserse		(790)	(210)	(21)	(1)	
(conversion)		(300/2/0.19)	(300/6/0.24)	(300/50/0.28)	(300/300)	
Corresp, AC Power (@RT) /CM	W / module	853 / 2	318 / 2	271 / 2	1.83 / 2	1,444 / 2
Total, AC Power for 886 CM	MW/886 CM					<u>1.28 / 2</u>
						4~5 % to overall.

Assumptions: Each HOM loads to be divided by 2, because of a historical reason in the ILC-TDR process (Ref., KY).

15

HOM Cryogenic and AC-Power Load /CM for ERLC and ILC: with same CM string design applied for HOM load extraction

ERLC	Unit	Heat Load				SUM
Parameter		at 2K, [W]	at 5-8 K[W]	at 40 - 80 K [W}	(RT)	
Overall	W /module (Twin)	685	970	8,180	1,100	10,935
Thermal eff. Invserse		(901)	(208)	(21)		
(conversion)		(300/2/0.185)	(300/6/0.24)	(300/50/0.28)		
Corresp, AC Power (@RT)/CM	W / mocule (Twin)	617,185	201,760	171,780	1,100	991,825
Total, AC Power for 1390 CM	MW/1390 CM					<u>1,380</u>

ERLC / ILC = 2,000

ILC	Unit	Heat Load				SUM
Parameter		at 2K, [W]	at 5-8 K[W]	at 40 - 80 K [W}	(RT)	
HOM related	W /module	1.08 / 2	1.53 / 2	12.89 / 2	(1,83) / 2	15.5 / 2
Thermal eff. Invserse		(790)	(210)	(21)	(1)	
(conversion)		(300/2/0.19)	(300/6/0.24)	(300/50/0.28)	(300/300)	
Corresp, AC Power (@RT) /CM	W / module	853 / 2	318 / 2	271 / 2	1.83 / 2	1,444 / 2
Total, AC Power for 886 CM	MW/886 CM					<u>1.28</u> / 2

HOM Load Comparison between **ERLC** and **ILC**

		ERLC (1.3 GHz)	ILC	ERLC / ILC	
f	GHz	1.3	1.3		
N: (ee+) / bunch	10^10	0.5	2	0.25	
Dt (bunch distance)	ns	5	554	1/111	
l (pulse)	mA	160	5.78	27.7	
Duty ovelo		1/2	554ns*1312/200ms	01 7	
Duty cycle		1/5	0.00363	91.7	
l (average)	mA	53.3	0.021	2540	
Accelerating gradient	MV/m	20	31.5	0.635	
L (including deceleration, both	km	125GV/(20MV/m)	125GV/(31.5/MV/m)	2 15	
e+ and e-)	KIII	*2 *2=25 km	*2=7.937 km	3.15	
N * I-av * L		666	0.333	2000	
HOM Load:	MW	1260 (To be confirmed !)	1.26* (1/2)		

AC Wall-Plug **Power** of ERLC and ILC

AC Power Summary:		ERLC as proposed by V.T.	ERLC w/ missing AC added		ILC
SRF frequency	GHz	1.3	1.3		
e- Source total	MW	25	2.5		4.9
e+ Source total	MW	2.0	2.5		9.3
DR / Radiation in Wiggler	MW	5.3	5.3		14.2
RTML	MW	0.0	0.0		10.4
ML total	MW	122	139		49
RF for Beam Acc.		30	30.0	24	l.4
Cryog (RF, other load)		92.0	92.0	14	k1
(Cryog (HOM)		0.0	0.0	1.3	3
CF-Utilities			16.5	10).5
BDS	MW		9.3		9.3
Dumps	MW		0.0		1.2
AC Power Accelerator	MW	130	156		98
IR/MDI	MW		5.8		5.8
Main Campus	MW		2.7		2.7
General Margin	MW		3.3		3.3
Total AC Power	MW		<u>167</u>		<u>110</u>

Our Estimate for ERLC thermal loads, and Various Examines to reduce AC (wall-pug) Power

- An Issue
- ERLC HOM load becomes x 2000 times that of ILC,
 - Resulting in >1.2 GW AC (wall-plug) power for HOM
 - if the same ML CM design at HOM absorber at CM end, with HOM distributed absorption at 1.8, 5–8, 40 80K,
- Various examines to find solution to reduce AC (wall-plug) power:
 - HOM load extraction to higher temperature (80 K or higher)
 - It requires HOM absorber at each cavity end, referring CBETA-MLC
 - → Thanks for Chris' advice and references.
 - Increasing Iris radius → Lower SRF frequency

How to compare the ERLC and ILC ?

Convenient Relations:

Luminosity: $\propto N x DF$

(if N/sig-x = const)

HOM:
$$\propto N^2/d x L_{act}$$
 or $N x < Iav > x L_{act}$
 $\propto 1/a^2$

 $P_{-RF-LOSS} = V^2 / \{ (R/Q) Q_0 \}$

$$P_{diss} = \frac{V_{\rm acc}^2}{(R/Q)/Q_0},$$

Eq. 6.1 in Telnov's report:

 $P_{-HOM} = \{265/d \ [m]\} \ x \ (N/10^{10})^2 \ x \ (L-act \ /25 \ (km/km)) \ [MW]$

$$P_{\rm HOM} = \frac{265}{d[{\rm m}]} \left(\frac{N}{10^{10}}\right)^2 {\rm MW}.$$

Eq. 5.3 in Telnov's report

2021/8/4

DF: Duty factor N: # particle / bunch d: bunch separation distance [m] L-act: Active Accelerator Length [m] a: Cavity Aperture Radius [mm] G: Acc. Gradient [MV/m] R/Q: Shunt impedance (1035 Ω at 1.3 GHz elliptical) E: Voltage [MV] Q₀: Quality Factor

Optional Comparisons of ML AC Wall-Plug Power for ERLC and ILC

	unit	ERLC-1 HOM to 1.8K ~	ERLC-2 HOM to 50K ~	ERLC-3 HOM to 80K ~	ERLC-4 HOM to 80K ~ N/3, DF=1	ERLC-5 HOM to 80K ~d*3, DF=1	ERLC-6 HOM to 1.8K ~	ERLC-7 HOM to 50K ~	ILC HON to 2K ~
Luminosity	10E35	4.8	4.8	4.8	1.6	4.8	4.8	4.8	0.135
Frequency	GHz	1.3	1.3	1.3	1.3	1.3	0.65	0.65	1.3
HOM absorber temp.	К	1.8, 6, 50, RT	50, RT	80K, RT	80K, RT	80K, RT	1.8, 6, 50, RT	50, RT	<mark>2</mark> , 6, 50, (RT)
Iris Radius	mm	35	35	35	35	35	70	70	35
Gradient	MV/m	20	20	20	20	20	20	20	31.5
L-active for SRF field	km	2x12.5	2x12.5	2x12.5 (x1.2)	2x12.5 (x1.2)	2x12.5 (x1.2)	2x12.5/22	2/12.5/22	7.94/20.5
L-tunnel (physical L.)	km	22	22	22 (x1.2)	22 (x1.2)	22 (<mark>x1.2</mark>)			
# CM (twin cavity)		1390	1390	1390	1390	1390	695	695	886
AC Wall-plug Power:									
Cryog.: Dynamic (RF)Load	MW	100	100	100	300	300	150	150	5.1
HOM (RF) Load	MW	1380	294	178	59	178	346	74	0.65
Input Coupler Load	MW	18	18	15	15	15	9	9	1.6
Static Load	MW	21	21	23	23	23	14	14	8.3
RF Power for Beam Acc.	MW	165	164	164	164	164	165	165	24
Grand total	MW	1686	596	479	562	679	683	411	40
Note-A:			HOM-ext T. effect, significant	~ consistent with estimate based on CBETA. design.	Same at Left, but. n/3, DF=1, L ➔ 1/3	Same at Left, but. d*3, DF=1	Iris R effect, significant	HOM-ext T. and Iris R effect	

Note-B: All cases assuming the Eu-XFEL like 9-cell cavity for simplicity in comparison CBETA uses 7-cell cavity with larger beam pipe.

Optional Comparisons of ML AC Wall-Plug Power for ERLC and ILC

	unit	ERLC-1 HOM to 1.8K ~	ERLC-2 HOM to 50K ~	ERLC-3 HOM to 80K ~	ERLC-4 HOM to 80K ~ N/3, DF=1	ERLC-5 HOM to 80K ~d*3, DF=1	ERLC-6 HOM to 1.8K ~	ERLC-7 HOM to 50K ~	ILC HON to 2K ~
Luminosity	1.00E+36	4.8	4.8	4.8	1.6	4.8	4.8	4.8	0.135
Cryog, Dynamic Load	MW	100	100	100	300	300	150	150	5.1
Cryog. HOM (RF) Load	MW	1380	294	178	59	178	346	74	0.65
Cryog. Input Coupler Load	MW	18	18	15	15	15	9	9	1.6
Cryog. Static Load	MW	21	21	23	23	23	14	14	8.3
RF Power for Beam Acc.	MW	165	164	164	164	164	165	165	24
Grand total	MW	1686	596	479	562	679	683	411	40

Comparison of SRF systems for ILC-250 and ERLC

S. Belomestnykh (210716) and A. Yamamoto 's update (210801a)

2021/7/16, --> 2021/8/1

EXEL Sheet: Comparison-ERLC-ILC (AC-Power)--210801 (1/2)

Parameter ERC (1.3 GH) Units ERC (1.3 GH) PERC (1.3 GH) Divis 1.8.5 (s.0). DF-1/3 ERC (1.3 GH) NOA 108 K, FI DF-1/3 ERC (1.3 GH) DIVIS 1.8.5 (s.0). DF-1/3 ERC (1.3 GH) DF-1/3 <
Parameter ERC (1.3.GH2) Parameter ERC (1.3.GH2) PDF-1/3 ERC (1.3.GH2) PDF-1/3 PCM L miss pr. rt (DM and pref. rt). DF-1/3 HOM L miss pr. rt (DM and pref. rt). No and pref. rt). DF-1/3 HOM L miss pr. rt (DM and pref. rt). DF-1/3 ERC (1.3.GH2) DF-1/3 LC
Parameter Unds HOM 112.6, 60, 71 DF-1/3 HOM 101805, 72 DF-1/3 HOM 101805 HOM 101805 HOM
DF-1/3 DF-1/3 PD-1/3 Pound bit of the set times. DF-1/3 Beauting target times. P-1/6 ⁻¹ DF-1/3 DF-1/3 <thdf-1 3<="" th=""> <thdf-1 3<="" th=""> <thdf-1< td=""></thdf-1<></thdf-1></thdf-1>
Beam energy eV 2.50E+11 2.50E+11 <t< td=""></t<>
Deam energy eV 2.50E+11 2.50E+10 3.50E+10 3.50E+10 <t< td=""></t<>
nodes gate and the constraint of the constra
Crimetry gradient V/m 1.35E-07 1.35E RF frequency Hz 1.35E-09 1.35E-09 1.30E-09 1.30E-09 1.30E-09 1.30E-09 5.05E-08 5.05E-08 5.05E-08 5.05E-08 5.05E-08 5.05E-08 5.05E-08 5.05E-08 1.30E <
Quo 3.00E+10 3.00E+10 3.00E+10 3.00E+10 3.00E+10 3.00E+10 3.00E+10 4.00E+10
Active inacting ting to 21 do evaluate AL for Twinr) m 22.00E-04 32.00E-04 3.70E-04
Linds engin m d. 7,0E-04 3,70E-04 3,70E-04 3,70E-04 3,70E-04 3,70E-04 3,70E-04 3,70E-04 3,70E-04 1,70E-04 1,70E-04 3,70E-04 1,70E-04 1,70E-04 3,70E-04 1,70E-04 1,70E
hr requency hz 1.302+09 1.302+09 1.302+09 1.302+09 1.302+09 1.302+08 5.002+03 5.002+03
IV/C: avity shape factor Ohm 1036 1036 1036 1036 1036 1037 1037 1037 No. of cavities 24091 24091 24091 24091 24091 24091 12045 12045 12045 No. of cavities 24091 24091 24091 24091 24091 12045
Active cavity length m 1.038 1.390 1.2091 2.0091 2.0091 2.0091 2.0091 2.0091 2.0091 2.0091 2.001 3.30 1.39
No. of cavines 24091 24091 24091 24091 24091 24091 24091 24091 24091 12045 12045 1304 No. of cryondels \$ 2 aperture (to evaluate Input Coupler load) 1390 <
No. of cryomodules 2 aperture (to evaluate AL power) 2780 2780 2780 2780 2780 2780 2780 1890 1800 1800 1800
No. of CM for V. Vessel (to evaluate Input Coupler load) 1390
Gryogenice: KP - Losses: Cavity losses W 13.86 1
Cavity losses W 13.86
Losses per meter W/m 13.36 13.36 13.36 13.36 13.36 13.36 20.01 20.01 6 Total linac dynamic cavity losses at 1,8K, 2 K W 3.34E+05 3.34E+05 3.34E+05 3.34E+05 3.34E+05 5.00E+05 5.00E+05 <td< td=""></td<>
Total linac dynamic cavity losses at 1,8K, 2 K W 3.34E+05 3.34E+05 3.34E+05 3.34E+05 3.34E+05 5.00E+05
Beam ourrent A 1.60E-01 1.60E-01 1.60E-01 5.34E-02 5.34E-02 1.60E-01 1.60E-01 5.80E Bunch population 5.00E+09 5.00E+04
Bunch population 5.00E+09 5.00E+08 5.00E+08 5.00E+08 5.00E+08 5.00E+08
Bunch separation s 5.00E-09
Bunch separation m 1.50
Bunches per pulse 1.311 Rep rate Hz 2.00E+08 2.
Rep rate Hz 2.00E+08 2
Qext 1.01E+07 1.01E+07 1.01E+07 3.04E+07 3.04E+07 2.03E+07 20272672.52 5.00 Cavity half-bandwidth Hz 64 64 64 21 21 16 16 Cavity half-bandwidth s 2.48E-03 2.48E-03 7.45E-03 7.45E-03 9.93E-03 9.93E-03 9.93E-03 9.93E-03 9.924 Cavity fill time s 1.74E-03 1.74E-03 1.74E-03 5.21E-03 6.94E-03 6.94E-03 9.924 Beam pulse length s 2.00 <t< td=""></t<>
Cavity half-bandwidth Hz 64 64 64 21 21 16 16 Cavity decay time s 2.48E-03 2.48E-03 2.48E-03 7.45E-03 7.45E-03 9.93E-03 9.93E-03<
Cavity decay time s 2.48E-03 2.48E-03 2.48E-03 7.45E-03 9.93E-03
Cavity fill time s 1.74E-03 1.74E-03 5.21E-03 5.21E-03 6.94E-03 6.94E-03 9.24 Beam pulse length s 2.00 2.0
Beam pulse length s 7.27 RF pulse length s 2.00 2.00 2.00 2.00 2.00 1.65 RF-beam power efficiency 0.333 0.333 0.333 0.999 0.999 0.333 0.333 8.26
RF pulse length s 2.00 2.00 2.00 2.00 2.00 2.00 1.65 RF-beam power efficiency 0.333 0.333 0.333 0.999 0.999 0.333 0.333 8.26 Duty factor (for RF-ON time) 0.333 0.333 0.333 0.999 0.999 0.333 0.333 8.26
RF-beam power efficiency Duty factor (for RF-ON time) 0.333 0.333 0.999 0.999 0.333 0.333 8.26
Duty factor (for RF-ON time) 0.333 0.333 0.333 0.999 0.999 0.333 0.333 8.26
Duty factor (for Beam-ON time) 3.64
Average linac dynamic cavity losses at 1.8K, 2K W 1.11E+05 1.11E+05 1.11E+05 3.34E+05 3.34E+05 1.67E+05 1.67E+05 6.51E
RF: Corresponding Total AC power for Linac W 1.00E+08 1.00E+08 3.01E+08 3.01E+08 1.50E+08 1.50E+08 5.14E
Average RF losses at 1.8K, 2 K per (Twin, Single) CM W 80.08 80.00 239.99 239.99 240.01 240.01
Cryogenics: HOM Losses:
HOM power total W 4.42E+07 4.42E+07 4.91E+06 1.47E+07 1.10E+07 1.10E+07 2.03E
Average total HOM power W 1.47E+07 1.47E+07 1.47E+07 4.90E+06 1.47E+07 3.68E+06 3.68E+06 7.371
HOM power per cavity W 1.83E+03 1.83E+03 1.83E+03 2.04E+02 6.11E+02 9.17E+02 9.17E+02 2.65F
Average HOM power per cavity W 611.1 6.10E+02 6.10E+02 2.03E+02 6.10E+02 305.6 305.6
Average HOM power per CM for twin aperture W 1.10E+04 1.10E+04 1.0E+03 1.10E+04 5.50E+03 5.50E+03
Av. HOM loss at 1.8K, 2 K per CM for twin aperture W 685.06 0.00 0.00 0.00 342.55 0.00
Av. HOM loss at 5-8 K per CM for twin aperture W 970.50 0.00 0.00 0.00 485.27 0.00
Av. HOM loss at 40-80 K per CM for twin aperture W 8.18E+03 9.83E+03 9.83E+03 9.83E+03 9.83E+03 4.09E+03 4.09E+03
Av. HOM to RT per CM (or to somewhere ??) W 1.16E+03 1.16E+03 3.87E+02 1.16E+03 5.81E+02 5.81E+02
Av/htpMl_Competendend. AC Power/CM for twin-aperture W 9.96E+05 2.12E+05 1.28E+05 4.28E+04 1.28E+05 4.98E+05 1.06E+05 72
HOM: Correspond. Total AC Power for Linac W <u>1.38E+09</u> 2.94E+08 <u>1.78E+08</u> <u>5.94E+07</u> <u>1.78E+08</u> <u>3.46E+08</u> <u>7.37E+07</u> <u>6396</u>
Cryogenics: Input Couplerrs;

3.00E+08

c -

EXEL Sheet: Comparison-ERLC-ILC (AC-Power)--210801 (1/2)

HOM: Correspond. Total AC Power for Linac	W	1.38E+09	2.94E+08	1.78E+08	5.94E+07	1.78E+08	3.46E+08	7.37E+07	639626.5
Cryogenics: Input Couplerrs;									
Input coupler loss at 1.8K, 2 K per CM	W	2.82	2.82	2.82	2.82	2.82	2.82	2.82	0.41
Input coupler loss at 5-8 K	W	21.03	21.01	21.01	21.01	21.01	21.03	21.03	3.06
Input coupler loss at 40-80 K	W	287.17	286.88	286.88	286.88	286.88	287.17	287.17	41.78
Beam tube bellows at 2 K (included in HOM)	W	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Input Coupler Correspond. AX Power / for LINAC	MW	18	18	15	15	15	9	9	1.64
Cryogenics: Statice Losses:									
Static loss at 1.8K/2 K per CM	W	9.00	9.00	10.80	10.80	10.80	12.00	12.00	6.00
Static loss at 5-8 K	W	19.48	19.48	23.37	23.37	23.37	25.97	25.97	12.98
Static loss at 40-80 K	W	135.07	135.07	162.09	162.09	162.09	180.10	180.10	90.05
Static losses, Correspond. AX Power / for LINAC	MW	20.93	20.93	23.20	23.20	23.20	13.95	13.95	8.27
Cryogenics Sum:									1000
Total CM heat load at 1.8K/2 K	W	776.96	91.81	93.61	253.61	253.61	597.38	254.83	14.33
Total CM heat load at 5-8 K	W	1011.01	40.49	44.38	44.38	44.38	532.27	47.00	16.81
Total CM heat load at 40-80 K	W	8.60E+03	1.03E+04	1.03E+04	3.73E+03	1.03E+04	4.56E+03	5.39E+03	138.28
Total linac heat load at 1.8K/2 K	W	1.08E+06	1.28E+05	1.30E+05	3.52E+05	3.52E+05	4.15E+05	1.77E+05	1.26E+04
Total linac heat load at 5-8 K	W	1.41E+06	5.63E+04	6.17E+04	6.17E+04	6.17E+04	3.70E+05	3.27E+04	1.48E+04
Total linac heat load at 40-80 K	W	1.20E+07	1.42E+07	1.43E+07	5.18E+06	1.43E+07	3.17E+06	3.74E+06	1.22E+05
Conversion to AC from 1.8K/2 K	W/W	900.90	900.90	900.90	900.90	900.90	900.90	900.90	789.47
Conversion to AC from 5-8 K	W/W	208.33	208.33	208.33	208.33	208.33	208.33	208.33	208.33
Conversion to AC from 40-80 K	W/W	21.43	21.43	12.93	12.93	12.93	21.43	21.43	21.43
Total AC power for 1.8K/2 K	W	9.73E+08	1.15E+08	1.17E+08	3.18E+08	3.18E+08	3.74E+08	1.60E+08	9.98E+06
Total AC power for 5-8 K	W	2.93E+08	1.17E+07	1.29E+07	1.29E+07	1.29E+07	7.71E+07	6.80E+06	3.09E+06
Total AC power for 40-80 K	W	2.56E+08	3.05E+08	1.85E+08	6.69E+07	1.85E+08	6.79E+07	8.02E+07	2.61E+06
Total AC power coverted to Wall Plug Power	W	1.52E+09	4.32E+08	3.15E+08	3.97E+08	5.15E+08	5.19E+08	2.47E+08	1.57E+07
Beam power per cavity	W	3.32E+06	3.32E+06	3.32E+06	1.11E+06	1.11E+06	6.65E+06	6.65E+06	1.90E+05
Total beam power	W								1.45E+09
Average total beam power	W				111111-000		11111111111	1 10 10 10 1 1 1 1 1 1 1 1 1 1 1 1 1 1	5.27E+06
ERLC ML fill time	5	1.23E-04	1.23E-04	1.23E-04	1.23E-04	1.23E-04	1.23E-04	1.23E-04	
ERLC beam ramp up/down time	5	1.00E-02	1.00E-02	1.00E-02	1.00E-02	1.00E-02	1.00E-02	1.00E-02	
RF power during beam ramp up/down	W	4.10E+04	4.10E+04	4.10E+04	1.37E+04	1.37E+04	8.20E+04	8.20E+04	
RF power during energy recovery	W	1.02E+04	1.02E+04	1.02E+04	3.42E+03	3.42E+03	2.05E+04	2.05E+04	
RF Power for ML Beam Acceleration and ERL:	1								
Total ML RF power during pulse	W	2.47E+08	2.47E+08	2.47E+08	8.23E+07	8.23E+07	2.47E+08	2.47E+08	1.45E+09
Average ML RF power	W	8.23E+07	8.22E+07	8.22E+07	8.22E+07	8.22E+07	8.23E+07	8.23E+07	1.20E+07
AC to RF power efficiency		0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5
Total AC power for RF	W	1.65E+08	1.64E+08	1.64E+08	1.64E+08	1.64E+08	1.65E+08	1.65E+08	2.39E+07
Grand total AC power	W	1.69E+09	5.96E+08	4.79E+08	5.62E+08	6.79E+08	6.83E+08	4.11E+08	3.96E+07
0001 /0 /1	MW	1686.42	596.35	479.15	561.73	679.49	683.47	411.09	39.63

Outline

- Executive Summary
- General Comparisons
- How to compare Power Consumption?
 - RF dynamic thermal load to Cryogenics
 - HOM absorption, thermal load to Cryogenics
- AC (wall-plug) Power Comparison of ERLC with ILC
 - Some examines to seek for minimizing AC (wall-plug) power
- Cost comparison of ERLC with ILC
- Further questions and issues to be studied

Thinking about Relative Costs of ERLC to ILC

	ILC [%]	Relative Ratio of ERLC to ILC	ERLC [%]	Not¥le		
e- source	4	x 0.8	3.2	Slightly lower because of Less duty factor		
e+ source	6	x 0.8	4.8	Slightly lower because of Less duty factor		
Damping Ring	10	v 1 0	01	Assuming similar with DR PTML combined		
RTML	11	X 1.0	21	Assuming similar with Dn+n twic combined		
Main Linac	50	x 1.8 x 1.5	113	Assuming twin cavity in common CM (x1.5), and 2/3 Gradient resulting x1.5 length		
		(~ x 3 x 2)	(~ 300)	Depending on the HOM absorption temperature and periodicity, and cavity frequency		
BDS	7	x 1.8	13	Doubling # of BDS lines necessary, with less requirement after collision,		
IR	4	x 1	4	Assuming similar IR design		
Main Dump	1	x 0.1	0.1	Assuming abort-dump remaining		
Common	7	x 1.5 ~ x 3	11 ~ 21	Assuming it ~ proportional to ML length, and Assuming more cost for twin ML w/ additional work.		
Total	100		≥ 170 (~ 370)	Depending on the ERL design: HOM absorption T. and Frequency		

An Exercise: Relative Cost Estimates of ERLC compared with ILC

		ERLC As proposed 1.3 GHz HOM to 1.8K~	ERLC Re-evaluated 1.3 GHz HOM to 1.8K~	ERLC Re-evaluated 1.3 GHz HOM to 50K ~	ERLC Re-evaluated 1.3 GHz HOM to 80K ~	ERLC Re-evaluated 0.65 GHz HOM to 1.8K ~	ERLC Re-evaluated 0.65 GHz HOM to 50K ~	ILC 1.3 GHz HOM to 2K ~
AC (wall-plug) Power	(MW	(167)	(1686+6)	(490+6)	(415+6)	(683+6)	(384+6)	(110)
Sources	%	8	8	8	8	8	8	10
Wiggler/DR + RTML	%	21	21	21	21	21	21	21
Main Linac	%	50x1.5x1.5	50x3x2	50x2x1.5	50x2x2	50x3x1.5	50x3x2	50
BDS	%	13	13	13	13			7
IR	%	4	4	4	4	4	4	4
Main Dump	%	-	-	-	-	-	-	1
Common	%	11	21	14	14	14	14	7
Grand total	%	170	367	235	260	272	347	100
Note: 2021/8/4		Respecting original estimate	Cryogenics load very high	Cryogenics load reduced	.Cryogenics load reduced, Additional ML length required for many HOM absorber	SRF frequency reduced and CM cost high (x3) (Referring SPL- CM)	SRF frequency reduced and CM cost high (x3) Additional tunnel length.	2

Outline

- General Comparisons
- How to compare Power Consumption?
 - RF dynamic thermal load to Cryogenics
 - HOM absorption, thermal load to Cryogenics
- AC (wall-plug) Power Comparison of ERLC with ILC
 - Some examines to seek for minimizing AC (wall-plug) power
- Cost comparison of ERLC with ILC

• Further questions and issues to be investigated

Questions to be settled

- · How relatively expensive is twin aperture SRF cavity?
- How Hom load may be reduced with 650 MHz and higher?
 - · How is it practical even in case of twin?
- How HOM load may be effectively extracted to Higher temperature and/or RT with a large fraction?
 - Less multiple cavity?
 - How much distance shall be considered b/w CM?
 - How much reduced in filling factor \rightarrow 50 % or less ?
 - A suggested guideline : Cornel ER-MLC, CBETA
- RF Phase accuracy/tolerance to sufficiently match to both acceleration and deceleration (in opposite direction)

Many Thanks for Eiji's and Chris' comments, advices & references !

Courtesy: B. Rimmer

HOM damping at ambient temperature

MOPP140

Proceedings of EPAC08, Genoa, Italy

STATUS AND TEST RESULTS OF HIGH CURRENT 5-CELL SRF CAVITIES DEVELOPED AT JLAB*

F. Marhauser[#], W. Clemens, G. Cheng, G. Ciovati, E.F. Daly, D. Forehand, J. Henry, P. Kneisel, S. Manning, R. Manus, R.A. Rimmer, C. Tennant, H. Wang, Jefferson Laboratory, Newport News, VA 23606, U.S.A.

Figure 1: 3D CAD view inside a 1497 MHz highcurrent cavity pair cryomodule under development.

Figure 2: 1.5 GHz high-current cavity with two threefolded waveguides and blanked-off Nb extensions.

Overview -- again

- ERLC requires significant AC (wall-plug) power consumption mainly for cryogenics loaded by RF dynamic loss because of RF voltage and HOM load because of beam current, under CW mode, even though the duty factor limited to 1/3. It is un-acceptably high, if the CM and HOM absorption design as similar as that of ILC.
- To significantly reduce the AC power, ERLC-CM designs needs to be based on:
 - Efficient CM design with twin aperture SRF cavities in common Cryomodules.
 - HOM loads extracted directly to much higher temperature (~50 ~ 100K)
 - HOM absorber/dumper at each cavity end (instead of each CM end)
 - It results in **longer CM** and and ML lengths, and additional cost.
- The design with reduced N per bunch (and/or increased bunch distance) and a full CW mode (DF=1) remains as a possibility for the proposal to be more practical, with the **luminosity** to be reasonably compromised.
- The construction cost would be relatively much higher than that estimated to ILC.
- Long term development will be necessary to demonstrate and establish the technology for the project realization: twin aperture cavity, frequent HOM load extraction, thermal & cryogenics design optimization, and others. 31

2021/8/4

33

R. Ainsworth et al., "Asymmetric dual axis ERL ,," PRAB 19, 083502 (2016)

Courtesy: C. Adolphsen

I.V. Konoplev et al., "Experimental studies of 7-cell dual axis asymmetric cavity …" PRAB, 20 103501 (2017)

Figure 1: A cut-away CAD model showing the main features of the ERL Linac cryomodule.

"Cryogenic heat load of the Cornell ERL Main Lincac Cryomodule" E. Chojnnacki et al., SRF2009, Berlin, THPP0034.

ILC CM Interconnect, and HOM Absorber

KEKB Single Cell Cavity and HOM dumper at RT

Variety of Elliptical Cavities

General Cost Estimate ILC-500 and -250

	TDR: ILC500	ILC250	
	[B ILCU]	[B ILCU]	
	(Estimated by GDE)	(Estimated by LCC)	
Accelerator Construction: sum	n/a	n/a	
Value: sub-sum	7.98	4.78 ~ 5.26	
Tunnel & building	1.46	1.01	
Accelerator & utility	6.52	3.77 ~ 4.24	
Labor: Human Resource	22.9 M person-hours	17.2 M person-hours	
	(13.5 K person-years)	(10.1 K person-years)	

http://www.mext.go.jp/component/b_menu/shingi/toushin/__icsFiles/afieldfile/2018/09/20/1409220_2_1.pdf

FIG. 7. Costs of the ILC250 project in ILCU as evaluated by the Linear Collider Collaboration (LCC), converted to JPY and re-evaluated by KEK, and summarised in the MEXT ILC Advisory Panel report, in July, 2018.