Experimental particle. physics

European School of Instrumentation in Particle & Astroparticle Physics

experiments to detect "invisible" particles

"Invisible" particles?

DM WIMP, Axion, ...

... but can "appear" in particle detectors at accelerators as missing transverse energy and momentum

Netection of Hautrinos

Neutron detection only via weak interaction ...

Possible reactions:

Charged Current Reactions:

. . .

$$\bar{\nu}_{\tau} + p \rightarrow \tau^+ + n$$

$$\bar{\nu}_e + e^- \rightarrow \mu^- + \bar{\nu}_\mu \bar{\nu}_e + e^- \rightarrow \tau^- + \bar{\nu}_\tau$$

Neutral Current Reactions:

$$\nu_e + e^- \rightarrow \nu_e + e^-$$

$$\nu_\mu + e^- \rightarrow \nu_\mu + e^-$$

$$\nu_\tau + e^- \rightarrow \nu_\tau + e^-$$

Remark:

Neutral Current vN-interactions not usable due to small energy transfer

Neutrino nucleon x-Section:

[examples]

10 GeV neutrinos:

$\sigma = 7 \cdot 10^{-38} \text{ cm}^2/\text{nucleon}$

Interaction probability for 10 m Fe-target: $R = \sigma \cdot N_A \text{ [mol^-1/g]} \cdot d \cdot \rho = 3.2 \cdot 10^{-10}$ with $N_A = 6.023 \cdot 10^{23} \text{ g}^{-1}$; d = 10 m; $\rho = 7.6 \text{ g/cm}^3$

 $\begin{array}{ll} \mbox{Solar neutrinos [100 keV]:} & \mbox{σ} = 7 \cdot 10^{-45} \mbox{ cm}^2 \mbox{nucleon} \\ \mbox{Interaction probability for earth: R} = \mbox{σ} \cdot N_A \mbox{[mol}^{-1}\mbox{g}] \cdot d \cdot \mbox{ρ} \approx 4 \cdot 10^{-14} \\ \mbox{with N_A} = 6.023 \cdot 10^{23} \mbox{g}^{-1}\mbox{; d} = 12000 \mbox{ km}\mbox{; ρ} = 5.5 \mbox{ g/cm}^3 \\ \end{array}$

Neutrino interactions: V-e

Neutrino interactions: v-nucleon

- Interaction happens with whole nucleon
 - Nucleon can at best undergo an isospin transition in case of charged current (quasi-elastic scattering)
 - ✓ In case of neutral current, scattering is perfectly elastic

Neutrino interactions: quasi-elastic v-nucleon

Threshold is different for different neutrino flavors...

Paolo Lipari, Maurizio Lusignoli, Francesca Sartogo, "The neutrino cross section and upward going muons" http://arxiv.org/abs/hep-ph/9411341

$$E << m_n \quad \sigma(vn) = \sigma(vp) \approx \qquad E > I \text{ GeV}$$

9.75.10⁻⁴² $\left(\frac{E}{10 \text{ MeV}}\right)^2 \text{ cm}^2 \qquad \sigma/E \sim \text{ constant}$

Marco Delmastro

A neutrino interaction...

CERN v-beam

Another neutrino interaction...

50 cm

65 cm

Neutrino interaction inclusive cross section

Neutrinos from the Sun

Neutrinos from the Sun

The "solar electron neutrino" problem

Neutrino oscillation

Imagine we send a neutrino on a *long* journey. Suppose neutrino is created in the pion decay

$$\pi o \mu
u_{\mu}$$

so that at birth it is a muon neutrino. Imagine that this neutrino interacts via W exchange in a distant detector, turning into a charged lepton. If neutrinos have masses and leptons mix, then this charged lepton need not be a muon, but could be, say, a tau.

- Neutrinos have masses \rightarrow there is some spectrum of neutrino mass eigenstates v_i w/ mass m_{v_i}
- Leptons mix \rightarrow neutrinos of definite flavor, v_e , v_μ , and v_τ , are not mass eigenstates v_i .

$$ert
u_{lpha}
angle = \sum_{i} U_{lpha i}^* ert
u_i
angle \quad U = egin{array}{cccc}
u_1 &
u_2 &
u_3 \
U_{e1} & U_{e2} & U_{e3} \
U_{\mu 1} & U_{\mu 2} & U_{\mu 3} \
U_{ au 1} & U_{ au 2} & U_{ au 3} \
U_{ au 1} & U_{ au 2} & U_{ au 3} \
\end{bmatrix}$$

Probability of neutrino oscillation

For full calculation see for instance Boris Kayser "Neutrino Oscillation Physics" http://arxiv.org/abs/1206.4325

(Simplified) probability of neutrino oscillation

Let's forget the imaginary part of U (assume neutrinos and antineutrinos behave the same) and suppose only 2 flavors...

$$U = \begin{pmatrix} \cos\theta & \sin\theta \\ -\sin\theta & \cos\theta \end{pmatrix}$$

$$P(l \rightarrow l') = 2\cos^2 \theta \sin^2 \theta - 2\cos^2 \theta \sin^2 \theta \cos \frac{m_j^2 - m_k^2}{2E}L$$

= $2\cos^2 \theta \sin^2 \theta \left(1 - \cos \frac{m_j^2 - m_k^2}{2E}L\right) = 4\cos^2 \theta \sin^2 \theta \sin^2 \left(\frac{m_j^2 - m_k^2}{4E}L\right)$
= $\sin^2 2\theta \sin^2 \left(\frac{m_j^2 - m_k^2}{4E}L\right)$

Nobel Prize 2002

The Nobel Prize in Physics 2002 was divided, one half jointly to Raymond Davis Jr. and Masatoshi Koshiba "for pioneering contributions to astrophysics, in particular for the detection of cosmic neutrinos" and the other half to Riccardo Giacconi "for pioneering contributions to astrophysics, which have led to the discovery of cosmic X-ray sources".

Raymond Davis Jr. [Homestake]

Masatoshi Koshiba [Kamiokande]

Riccardo Giacconi [X-Ray Sources]

Neutrino capture:

$$^{37}\text{Cl} + v_e \rightarrow ^{37}\text{Ar} + e$$

Detection of ³⁷Ar via e⁻-capture [³⁷Ar(e, v_e)³⁷Cl]; $\tau \approx 35$ days results in Auger-electron @ 2.82 keV which after extraction is detected in proportional counter

Experimental details:

- 615 tons of C₂Cl₄
- Threshold: 814-keV threshold
- Bubble He gas through to extract Ar [every 2-3 month]
- Ar trapped in cold trap
- Proportional Counter filled with Ar gas (7% methane)
- Important: ³⁷Cl is 24% abundant.

Lifetime: 35 days

Some very approximate numbers ...

- 615 tons C₂Cl₄ (Tetrachloroethelene)
- About 5 x 10²⁹ Chlorine Atoms (³⁷Cl)

6 Atoms/Molecule

- Prediction: 8 x 10⁻³⁶ ν-reactions/atom/sec
 i.e.: about 60 ³⁷Ar-atoms/month;
 but: half-life = 35 days → 30 atoms/month
- Expect: 60 atoms every 2 month out of ca. 10³⁰ Tetrachloroethelene molecules
- After 25 years:

Expectation: ~ 5000 ³⁷Ar-Atoms expected Observation: ~ 2200 ³⁷Ar-Atoms produced ³⁷Ar-Extraction Efficiency: ~ 95%

> ³⁷Ar-Detection Efficiency: ~ 45%

[875 counted: 776 after background subtraction]

super Kamiokande

Water tank 1.6 km below ground

50 Million liter ultra-pure water

1 Neutrino-interaction every 1.5 hours

Neutrino detection via Cherenkov light

Super-Kamiokande

Super-Kamiokande

Mounting of Photomultiplier Tubes

Total: 11,146 20" pmts 1,885 8" pmts

Sopper Kamiokande

Super-Kamiokande

The sun seen through the earth in neutrino light

Sspper Kamiokande

Muon event

Observation of clean Cherenkov ring with sharp edges

Flight direction from timing measurements [blue: early; red: late]

Energy from amount of light observed in PMTs

Sspper Kamiokande

Electron event

Observation of Cherenkov ring with fuzzy edge [from e.m. shower]

Flight direction from timing measurements [blue: early; red: late]

Energy from amount of light observed in PMTs

Sgpper Kamiokande

Solar neutrino

Unusually nice, well-defined

Flight direction from timing measurements [blue: early; red: late]

Energy from amount of light observed in PMTs

Nobel Prize 2015

The Nobel Prize in Physics 2015 was awarded jointly to Takaaki Kajita and Arthur B. McDonald "for the discovery of neutrino oscillations, which shows that neutrinos have mass."

Illustration: @ Johan Jarnestad/The Royal Swedish Academy of Sciences

Takaaki Kajita

Arthur B. McDonald

Illustration: © Johan Jarnestad/The Royal Swedish Academy of Sciences

CC
$$V_e + d \rightarrow p + p + e^{-}$$

• Measurement of v_e energy spectrum
• Weak directionality: 1-0.340 cos θ
NC $V_x + d \rightarrow p + n + V_x$
• Measure total ⁸B v flux from the sun
• $\sigma(v_e) = \sigma(v_\mu) = \sigma(v_\tau)$
ES $V_x + e^{-} \rightarrow V_x + e^{-}$
• Low Statistics
• $\Sigma \phi = \phi(v_e) + 0.154 \phi(v_\mu + v_\tau)$
• Strong directionality:
 $\theta_e \leq 18^\circ$ ($\tau_e = 10 \text{ MeV}$)

CC

NC

ES

Marco Delmastro

Experimental Particle Physics

$$\phi_{\text{CC}} = 1.76^{+0.06}_{-0.05} \,(\text{stat.})^{+0.09}_{-0.09} \,(\text{syst.}) \times 10^{6} \,\text{cm}^{-2} \text{s}^{-1}$$

$$\phi_{\text{ES}} = 2.39^{+0.24}_{-0.23} \,(\text{stat.})^{+0.12}_{-0.12} \,(\text{syst.}) \times 10^{6} \,\text{cm}^{-2} \text{s}^{-1}$$

$$\phi_{\text{NC}} = 5.09^{+0.44}_{-0.43} \,(\text{stat.})^{+0.46}_{-0.43} \,(\text{syst.}) \times 10^{6} \,\text{cm}^{-2} \text{s}^{-1}$$

 $\phi(\nu_e) = 1.76^{+0.05}_{-0.05} (\text{stat.})^{+0.09}_{-0.09} (\text{syst.})$ $\phi(\nu_{\mu\tau}) = 3.41^{+0.45}_{-0.45} (\text{stat.})^{+0.48}_{-0.45} (\text{syst.})$ $\times 10^{6} \,\mathrm{cm}^{-2} \mathrm{s}^{-1}$

> ve-flux too low! **Oscillations!**

CNGS Helium bags Decay tube Hadron stop Muon detectors Target Horn π/K - decay Reflector TN4 Muon SPS Pion / Kaon LEP/LHC Fe C Neutrino Proton to to Gran Sasso Gran 11111111 beam Sasso TI2 Linac 2.0m protons 2.7m PS 43.35m Booster 100m : Proton Synchrotron : Super Proton Synchrotron : Large Hadron Collider PS SPS LHC 1092m 18.2m 5m 67m 5m

Marco Delmastro

Marco Delmastro

Experimental Particle Physics

TPC as neutrino detectors

EUROPEAN ORGANIZATION FOR NUCLEAR RESEARCH

EP Internal Report 77-8 16 May 1977

THE LIQUID-ARGON TIME PROJECTION CHAMBER:

A NEW CONCEPT FOR NEUTRINO DETECTORS

C. Rubbia

ABSTRACT

It appears possible to realize a Liquid-Argon Time Projection Chamber (LAPC) which gives an ultimate volume sensitivity of 1 mm³ and a drift length as long as 30 cm. Purity of the argon is the main technological problem. Preliminary investigations seem to indicate that this would be feasible with simple techniques. In this case a multihundred-ton neutrino detector with good vertex detection capabilities could be realized.

http://cds.cern.ch/record/117852/files/CERN-EP-INT-77-8.pdf

Why LAr for neutrino detectors?

- Excellent insulator, very weakly electronegative: free electrons produced by ionization drift long distances
- Produces many electron-ion pairs: measurement of energy deposited in liquid;
- Good scintillator: measurement of energy of luminous flash produced by event, event localization
- Available in sufficient quantity

	Argon	CF ₃ Br
Nuclear collision length	53.2	49.5 cm
Absorption length	80.9	73.5 cm
dE/dx, minimum	2.11	2.3 MeV/cm
Radiation length	iation length 14 11 cm	
Density	1.40	1.50 g/cm ³

ICARUS (Imaging Cosmic And Rare Underground Signals)

Two identical modules

- 3.6 x 3.9 x 19.6 ≈ 275 m³ each
- Liquid Ar active mass: ≈ 476 t
- Drift length = 1.5 m (1 ms)
- HV = -75 kV E = 0.5 kV/cm
- v-drift = 1.55 mm/µs

Hall B @ LNGS

4 wire chambers:

- 2 chambers per module
- 3 readout wire planes per chamber, wires at 0,±60°
- ≈ 54000 wires, 3 mm pitch, 3 mm plane spacing
- 20+54 PMTs , 8" Ø, for scintillation light detection:
 - VUV sensitive (128nm) with wave shifter (TPB)

ICARUS

ICARUS

6 protons and 1 pion which decays at rest muon: 7.1 ± 1.3 [GeV/c]

http://icarus.lngs.infn.it/photos/NeutrinoEventsGallery/

Particle identification based on dE/dx dependence:

- Reconstr. 3D track segments: dx
- charge dep. on track segment: dE

Track	Edep	range
	[MeV]	[cm]
1(p)	185±16	15
5(p)	192±16	20
7(p)	142±12	17
8(π)	94±8	12
9(p)	26±2	4
10(p)	141±12	23
11(p)	123±10	6

OPERA (Oscillation Project with Emulsion-tRacking Apparatus)

OPERA

Marco Delmastro

Experimental Particle Physics

Dark Matter: astronomical evidence and candidates

Marco Delmastro

DM WIMP. Axion.

Experimental Particle Physics

 10^{-5}

 10^{-2}

Dark Matter Mass [GeV/c²]

10-11

 10^{-14}

 10^{-8}

53

 10^{13}

 10^{16}

arXiv:1903.03026

 10^{19}

 10^{10}

 10^{7}

WIMP detection: cryogenic experiments

WIMPs = Weakly interacting massive particles ...

Dark matter particles; must be neutral, i.e. must neither interact via electromagnetic nor strong interactions; WIMPs must be heavy, i.e. non-relativistic (cold dark matter) in order to allow for galaxy formation ...

Assumed mass range: 10 GeV - 10 TeV

Mass limits dependent on cross section ... [e.g.: $\sigma_{xp} = 1.6 \cdot 10^{-7}$ pb yields m_{WIMP} > 60 GeV]

Detection via elastic χ p-scattering ...

Assume WIMP velocity: $v_X \approx 300$ km/s, i.e. $\beta = 10^{-3}$...

Solar system speed w.r.t. to milky way: v = 250 km/s Velocity of earth moving w.r.t solar system: v = 30 km/s

Maximum energy transfer:

$$T_K^{\max} = 2 \frac{m_{\chi}^2 M_K c^2}{(m_{\chi} + M_K)^2} \beta^2 \approx 2M_K v_{\chi}^2$$

 $m_{\chi} \gg M_K$

How to detect WIMP?

Transferred energy of recoiling nuclei generally much smaller (< 10 %) ... Need detector that allows nuclei detection below keV range ...

```
Energy resolution requires: N_{excite} \gg 1
i.e. E_{excite} \ll 1 \text{ eV}
```

Remember:Gases–ionzation energy \approx 30 eVSilicon–electron/hole pair creation \approx 3 eV

Better possibilities:

Phonon excitation:

Maximum phonon energy in Si is 60 meV; roughly 2/3 of the energy required for electron-hole formation goes into phonon excitation ...

Superconducting detectors:

In superconductors the energy gap 2Δ is equivalent to the band gap in semiconductors; absorption of energy > 2Δ (typically 1 meV) can break up a Cooper pair ... Cryogenic detectors:

Detect low energies with very good resolution ...

Cryggeeig Detectorsrs

Phonon Detectors ...

Assume thermal equilibrium:

Convert absorbed energy into phonons:

 $\Delta T = E/C$

- C: heat capacity of the sample [specific heat × mass]
- E: deposited energy

Optimal detector: low heat capacity

Example 1: Si-detector at room temperature ... $C_{spec} = 0.7 \text{ J/gK}; \text{ E} = 1 \text{ keV}; \text{ m} = 1 \text{ g} \rightarrow \Delta \text{T} = 2 \cdot 10^{-16} \text{ K}$

Not very practical ... Need lower specific heat and mass ...

Example 2: Si-detector at low temperature ... $C_{\text{spec}} \propto (T/\Theta)^3$; $C_{\text{spec}} = 2 \cdot 10^{-15}$ K; T = 0.1 K; E = 1 keV; $m = 15 \ \mu g$ $\rightarrow \Delta T = 0.04$ K [possible!]

Basic configuration of cryogenic calorimeter

Resolution:

 $\begin{array}{l} n = CT/kT = C/k \\ \sigma_0 = kT\sqrt{n} = \sqrt{(CkT^2)} \\ \sigma_E = \epsilon_{Ph}\sqrt{(E/\epsilon_{Ph})} = \sqrt{(kTE)} \end{array} \right] \quad \sigma = \sigma_0 + \sigma_E$

Yields: $\sigma < 0.2 \text{ eV}$ [Si Semiconductor detector: $\sigma = 20 \text{ eV}$]

Dark matter detection overview

A Dark Matter detection example: XENON IT

• XENONIT

- Gran Sasso (Italy) underground lab
- 3.2 tonnes of ultra-pure liquefied xenon, 2.0 t of which serve as a target for particle interaction
- Signal = light + ionisation free electrons from a Xe
- Detector = Photomultipliers + TPC
- ✓ Possible fake = β -decays from Tritium contamination in Xe
- 2020 excess...
 - Excess of 53 events over 232 expected observed...
 - <u>https://arxiv.org/abs/2006.09721</u>

Marco Delmastro

A Dark Matter detection example: XENON IT

Marco Del......

Experimental run celle Physics

59

Limits and projected sensitivities

Spin-Independent limits and sensitivities, from "Direct Detection of WIMP Dark Matter: Concepts and Status" by Marc Schumann (<u>arXiv:1903.03026v2</u>). For Spin-Dependent sensitivities see full review paper.

Experimental Particle Physics

Finding new particles that constitute dark matter would be a major breakthrough in physics. As extraordinary new findings require extraordinary evidence, the hurdles are high. Various unusual experimental results of the last decade have been interpreted in terms of dark matter, but all of them could also be the result of a misunderstood background or other effects.

> M. Klasen, M. Pohl, G. Sigl Indirect and direct search for dark matter https://arxiv.org/abs/1507.03800