
Eric.Chabert@cern.ch ESIPAP – 2021 – Module 1 Programming/C++
1

C++ programming

Lecturers:

●Eric Chabert
●Eric Conte

Program:

6 hours of lectures (& tutorials)
4 computing sessions (3h each)

with an introduction to the use of

Eric.Chabert@cern.ch ESIPAP – 2021 – Module 1 Programming/C++
2

Goals of that course
don't hesitate to stop me & fill free to ask questions

while(!is_understood(what_I_said)){
cout<<explanation<<endl;
explanation+=adjustment;

}

Goals (within the limitation of 6 hours)

(Re)inforce your knowledge & understanding of the basis
Give you examples of applications
Highlight “not well known enough” features of C++
Give you guidance for your current & future developments
Discuss more advanced functionalities

Everything will not be covered
No formal lectures on ROOT or GEANT4 here
It is not an advanced lecture and will not become an C++ expert

You're following a begintermediate condensed lecture

Eric.Chabert@cern.ch ESIPAP – 2021 – Module 1 Programming/C++
3

Outline

Basic C/C++
• Choice of C++
• Variables & built-in types
• Operations
• Instructions
• Comments
• I/O including files
• Pointers & references
• Arrays
• Functions: main & others
• Compilation
• Namespace
• STL

• Vector
• string

• Preprocessor

Oriented object
• Struct
• Basic class
• Constructors
• Operator overload
• Inheritance
• Polymorphism
• Advanced OO

Various items
• Enums
• Casting
• RTTI
• Templates
• Exceptions
• Few guidelines

Eric.Chabert@cern.ch ESIPAP – 2021 – Module 1 Programming/C++
4

Why C++ ?
We are looking for scientific application (use of numerical methods,...)

and we want program to run “fast”

It cannot be an interpreted language (ex: python), but a compiled one

We have to deal with a complex environment and to perform well
advanced tasks

It must be an oriented object language (ex: java, ...)

We need a language for which tools already exists

It must have libraries (standard or not)

C++ is the (one) answer !

Most of HEP collaborations use C++ for their software developments

C++ is precisely defined by an ISO standard and is available on all OS

Programming concepts that you will learn using C++ can be used in
other languages

Eric.Chabert@cern.ch ESIPAP – 2021 – Module 1 Programming/C++
5

C++: a bit of history

Both C & C++ were “born” in the Bell Labs

C++ almost embed the C

Many tasks could be done in a C/style or C++/style

Some C/style “procedures” are be to proscribed

C++ has a long history and is still in development

C++ is less “modern” than java (91),python(93),C#(2000) …

We will here discuss about C++98 (not C++11)

C++11 C11

C++14

Dennis M. Ritchie Bjarne Stroustrup

C inventor C++ inventor

Eric.Chabert@cern.ch ESIPAP – 2021 – Module 1 Programming/C++
6

What is the language made of ?
Types (bool, int, float, char,...)

Expression and statements

Selection (if/else, switch,..)

Iteration (while,for,...)

Functions (“intrinsic” or user-defined)

Accessible via libraries

Containers (vector,map,..)

Accessible via libraries
With those ingredients, you can do a lot of things ….

...

Eric.Chabert@cern.ch ESIPAP – 2021 – Module 1 Programming/C++
7

“Hello world” example

#include <iostream>

int main() {
float x; //declaration
int i=3; //declaration and affectation
std::cout << “Hello world” << std::endl;
std::cout <<”i=” << i << std::endl;
return 0;

}

Header files
Preprocessor directive

Only one “main”
function per executable

Return an integer that can used
by the system

Type
Variable declaration
Variable affectation

Type
Variable declaration
Variable affectation

Namespace

Input/Output

main.cpp

Terminal

It is already a “rich” example !!

Eric.Chabert@cern.ch ESIPAP – 2021 – Module 1 Programming/C++
8

Global view

●Main

●Variables
●Pointers (address, array)
●Operators
●Instructions

●Functions

●Exceptions

I/O
Standard, files, error

STL

●Vector
●String
●...

Class

●Basics
●Inheritance
●polymorphism

templates

Preprocessor
commands

Documentation

Compilation

●Optimization
●Lib
●Makefile

Advices

Eric.Chabert@cern.ch ESIPAP – 2021 – Module 1 Programming/C++
9

Global view

●Main

●Variables
●Pointers (address, array)
●Operators
●Instructions

●Functions

●Exceptions

I/O
Standard, files, error

STL

●Vector
●String
●...

Class

●Basics
●Inheritance
●polymorphism

templates

Preprocessor
commands

Documentation

Compilation

●Optimization
●Lib
●Makefile

Advices

Eric.Chabert@cern.ch ESIPAP – 2021 – Module 1 Programming/C++
10

Variable and types
Several types could be accessible

Build-in types:
Ex: bool, int, float, double, char

Standard library types:
Ex:complex, string, ...

Specific libraries:
Ex: (Root) Float_t, TString, TH1F

User defined types:
your own classes

On the machine, everything is only bits filled with 0/1

“Type” is what interprets bits and give them meaning !

Eric.Chabert@cern.ch ESIPAP – 2021 – Module 1 Programming/C++
11

build-in type

type content size range
bool True (0) ou False (1) 8 bits
short Signed integer 16 bits [-32768,32767]
int Signed integer 32 bits [-2147483648,2147483647]
long Signed integer 64 bits [-9223372036854775808,92233720368547]

float floating-point 32 bits de 1.4E-45 à 3.4E+38

double floating-point 64 bits de 4.9E-324 à 1.8E+308

char ASCII char 8 bits [0,255]

Sign uses 1 bit – “unsigned” type have double possible value
Once you “declare” a variable of a given type, you allocate memory
Build-in type goes on the stack
fast access
available during the whole existence of the program

Type representation (number of bits used) depends on the platform
Ex: on my computer (icore7, 64 bits)

Eric.Chabert@cern.ch ESIPAP – 2021 – Module 1 Programming/C++
12

Standard library types

String

“Extension” of character chains

Discussed later in the course

complex<Scalar>

complex<double>
complex<float>

.. it's an example of “template class”

Headers:
#include <string>
#include <complex>

Eric.Chabert@cern.ch ESIPAP – 2021 – Module 1 Programming/C++
13

Types defined in other libraries

int_least8_t

int_least16_t

int_least32_t

uint_least8_t

uint_least16_t

uint_least32_t

...

Headers:
#include <boost/cstdint.hpp>

Int_t

UInt_t

Double_t

Double32_t ….

Headers:
#include <Rtypes.h>

Will ensure the number of bits used on the machine (portable)

(basic) types can be (re)defined by specific library

Eric.Chabert@cern.ch ESIPAP – 2021 – Module 1 Programming/C++
14

Usage of variables
Declaration

required

Precise the type of the variable

Initialization
Strongly recommended

Can lead to unexpected behavior otherwise

Declaration & Initialization can be done at once

Affectation

Operations

Conversion

Implicit (explicit)

Truncated numbers

Other features ...

int i;

i=0;
int j=10;

i=j; //affectation
i = i*2+1;
i=j**2+3*j;

float x = 103.4;
float y = 1.034e2; //e ou E

int i=23;
short b = (short) i; //C-like
short b = i; //C-like
short b = static_cast<short>(i); //C++ like
i= (int) 10.6; // will be truncated
float f = 10.6;
i = static_cast<float>(f); //C++ like

float a = 3.2;
int i = 1/a;

Eric.Chabert@cern.ch ESIPAP – 2021 – Module 1 Programming/C++
15

Declaration and initialization (II)

Declaration:

introduce a name into a scope
specify a type for named object
sometimes it includes an initialization
a name must always be declared before being used (compilation error otherwise)

Initialization:

Syntax depends on the type (see examples above)

Eric.Chabert@cern.ch ESIPAP – 2021 – Module 1 Programming/C++
16

Global view

●Main

●Variables
●Pointers (address, array)
●Operators
●Instructions

●Functions

●Exceptions

I/O
Standard, files, error

STL

●Vector
●String
●...

Class

●Basics
●Inheritance
●polymorphism

templates

Preprocessor
commands

Documentation

Compilation

●Optimization
●Lib
●Makefile

Advices

Eric.Chabert@cern.ch ESIPAP – 2021 – Module 1 Programming/C++
17

Variables: operations
Arithmetic operations

Affectation

Comparison operations

Boolean operations

Pre and post in(de)crement

+ addition
- soustraction
* multiplication
/ division
% modulo
-
(unaire)

opposed

+= add
-= subtract
*= multiply
/= divide
%= modulo

i++ post-increment
i-- post-decrement
++i pre-increment
--i pre-decrement

4 equivalent incrementation:
a=a+1;
a+=1;
a++;
++a;

“Concise operators” are generally better to use

a+=c ↔ a=a+c
a*=scale ↔ a=a*scale

Arithmetic operation Arithmetic/Affectation

In/De crement

+ addition
- subtraction
* multiplication
/ division
% modulo
-
(unaire)

opposed

Arithmetic operation

Comparison operators
== equality
!= difference
> ; >= Greater than(or equal)
< ; <= Lower than (or equal)

Eric.Chabert@cern.ch ESIPAP – 2021 – Module 1 Programming/C++
18

Precedence and associativity

From http://n.ethz.ch/~werdemic/download/week3/C++%20Precedence.html

Operator precedence determines which operator will be performed
first in a group of operators with different precedences
Ex: 5+3*2 computed as 5+(3*2) = 11 ant not (5+3)*2 = 16
The operator associativity rules define the order in which adjacent operators

with the same precedence level are evaluated
8-3-2 computed as (8-3)-2=3 and not 8-(3-2)=7

To ensure that you're calculus will be
performed as you expected, you can
always add parentheses.

Nevertheless it is better to not “overload”
you code with unnecessary ()

M
ax priority

http://n.ethz.ch/~werdemic/download/week3/C++%20Precedence.html

Eric.Chabert@cern.ch ESIPAP – 2021 – Module 1 Programming/C++
19

Integer representation

int - max value = 231 - 1
unsigned int - max value = 232 - 1

Bitwise operators
not only applicable to integers

& AND
| OR
^ XOR (exclusive or)
~ NOT – inversion of the bit

<< Left shift
>> Right shiftint a = 4; // coded ...000100

a=a<<3; // coded ...100000
cout<<”a=”<<a<<endl;
a=32

Eric.Chabert@cern.ch ESIPAP – 2021 – Module 1 Programming/C++
20

Floating Point representation
Real (float & double) are actual mainly represented using floating point

representation following the norm IEEE-754.

Representation: (-1)S x m x be-E

S: sign

M: mantissa
B: base

E: exponent

Reals are obviously discretely

represented on computers

Absolute precision evolve with the value of the variable

Eric.Chabert@cern.ch ESIPAP – 2021 – Module 1 Programming/C++
21

Precision & numerical uncertainty
Representation

The value you could want to represent might not be represented

(approximation)

Truncation

The result of a computation involving two well defined represented numbers can lead to a
truncated number

“Reduced” variable (close to 1)

This is equivalent to performance a change of variable with dimensionless variable

Subtraction of two variables having big difference will lead to a high uncertainty

Expressions being analytically equal will not necessarily give the same numerical results

First step before implementing

a formula is to choose the

the better expression (lowest uncert.)

Float a = 1;
Float b = 3;
Float c = a/b
cout<<”c=”<<c<<endl;
c=3.33333333333333315e-01

(a2-b2)/(a-b)!=(a+b) ?

Eric.Chabert@cern.ch ESIPAP – 2021 – Module 1 Programming/C++
22

Precision & numerical uncertainty

Precautions & tests:

Division by zero:
will lead to a crash – test the denominator first
Division of integer
Ex: float a = 1/3; // a = 0 !! - at least numerator of denominator should be an float
Equality test of reals
It might be better to test a small difference ε between the two variables (truncature pb)

Stl offers tools to perform test on numbers

Isinf // test for infinite
Isnan // NAN = Not A Number

// all combinations of bits doesn't represent a number (float/double)
...

Eric.Chabert@cern.ch ESIPAP – 2021 – Module 1 Programming/C++
23

Simple examples

0.999999

-25536 -727379968

Floating-point numbers are approximation of real numbers
Can lead to numerical errors (quantification?)

Integer types represent integer up to a certain limit
Overflow problem

Integer and real numbers are infinite while the number of bits to represent is definitively finite !
Remember this while applying numerical methods

5.7 55.7 5

Implicit conversion float to integer
truncature problem 1.23456790519e+17 123456789123456789

Lost of precision for large integer values
troncature problem

Eric.Chabert@cern.ch ESIPAP – 2021 – Module 1 Programming/C++
24

Type-safety violation

30000 48 0

C++ doesn't prevent you from trying to put a large value
into a small variable (though a compiler may warm)
Implicit narrowing

x:4196320 c: d:6.95315e-310

Always initialize your variable !!
Valid exception: input variable

char: a integer: 97

In memory, everything is just bits: 01100001
Type is what gives meaning to bits:
01100001 is the char 'a'
01100001 is the integer 97

Eric.Chabert@cern.ch ESIPAP – 2021 – Module 1 Programming/C++
25

Const variables
It is not a good idea to have “magic numbers”, “hardcoded values”.
When reviewing your codes, you should change them (better to be done at first implementation)

Many possibilities:
The value is a parameter:
user can change it (cin, file, ...)

Int nof_channels = 0;
cout<<”Enter the number of channel:”<<endl;
cin>>nof_channels;

The value is redefining by a macro alias:
#define NOF_CHANNELS 12

The value can be a constant !
const int nof_channels = 12;

Initialization should come with definition
The value is protected and could not be changed later on the program
Attempts to change the value will lead to compilation error

It is useful to define as const variables many kind of variables:
mathematical/physical constants: π,G, ε0
constants variables of your software: number of channels, ...

It helps for the meaning: 12 doesn't mean anything while nof_channels does !
It avoid numerical problems:having dependent on the number of digits: 3.14!=3.14159265

Eric.Chabert@cern.ch ESIPAP – 2021 – Module 1 Programming/C++
26

Static variable
Static variables keep their values and are not destroyed even after they

go out of scope

Can be useful for incrementation by example

Eric.Chabert@cern.ch ESIPAP – 2021 – Module 1 Programming/C++
27

Coding rules: name of variables
C++ Rules:

starts with a letter

only contains letters,digits, underscores

cannot use keywords names (if, int, ...)

Recommendations

Choose meaningful names

●Avoid confusing abbreviations and acronyms

●Use conventions (i,j,k as loop indexes by example)

Avoid overly long names

You could define your own rules (or the own of your team)

●Use of capital letters, underscore

●Examples

–ROOT class names starts with a “T” (ex:TGraph)

–variable with a “f” (ex: fEntries)

–Accessors starts with “Get” (ex: histo->GetXaxis())

Are forbidden:
●_x
●12x
●Time.Acquisition@CERN
●My Variable
●...

the_number_of_channels // too long
nof_channels // shorter and meaningful
Nofc; // what does it mean ??

Eric.Chabert@cern.ch ESIPAP – 2021 – Module 1 Programming/C++
28

Global view

●Main

●Variables
●Pointers (address, array)
●Operators
●Instructions

●Functions

●Exceptions

I/O
Standard, files, error

STL

●Vector
●String
●...

Class

●Basics
●Inheritance
●polymorphism

templates

Preprocessor
commands

Documentation

Compilation

●Optimization
●Lib
●Makefile

Advices

Eric.Chabert@cern.ch ESIPAP – 2021 – Module 1 Programming/C++
29

Instructions
Selection (if/else)

if(test){
Instructions1;

}
else if(test2){ // optional

Instructions2;
}
else{

Instructions3;
} // brackets not needed if

// there is only one line

Ex: if(a>b) max=a;
else max=b;

Loop: for

for(initialize;condition;increment){
instructions;

}
Initialize: ex: int i=0;
Condition: ex: i<10
Increment: ex: i++ (i=0 at it. 1)

++i (i=1 at it. 1)
For is used when the number of

Iterations is well defined
(ex: summation of all elements of an array/vector)

Loop: while

while(condition){
Instructions;

}
while is mandatory when the number of

Iterations is not know before running time
(ex: minimization problem)

do{
Instructions;

}
while(condition)
Ensure that instructions are run at least once

Condensed syntax

test ? Inst1: Inst2 ;

Ex: (a>b)? max=a: max=b;

Eric.Chabert@cern.ch ESIPAP – 2021 – Module 1 Programming/C++
30

Control commands
Break

Allow to stop a loop

Continue

Allow to bypass a section of code

Used in loops to go directly to next iteration

Return

Ends a function (Ex: main)

Can be followed by a variable

Eric.Chabert@cern.ch ESIPAP – 2021 – Module 1 Programming/C++
31

Expressions
Boolean type expression

Equality operators == equal
!= Not equal

Logical operators && and
|| or

! not

Relation operators < Less than
<= Less than or equal

> Greater than

>= Greater than or equal

All those expressions can be combined
also with the help of ()

Eric.Chabert@cern.ch ESIPAP – 2021 – Module 1 Programming/C++
32

Scopes
Global scope (accessible everywhere)

Class scope

Local scope (between {..}: loop, functions,...)

Statement scope (in a for-statement)

Remarks

A name in a scope can be seen from within its scope and within scopes
nested within that scope

A scope keeps “things” local
Prevent var. and functions to interfere with outside

Keep names as local as possible

int x; // global variable – avoid those where you can
int y; // another global variable
int f() {

int x; // local variable (Note – now there are two x’s)
x = 7; // local x, not the global x
{

int x = y; // another local x, initialized by the global y
// (Now there are three x’s)

x++; // increment the local x in this scope
}

}
// avoid such complicated nesting and hiding: keep it simple!

Eric.Chabert@cern.ch ESIPAP – 2021 – Module 1 Programming/C++
33

Global view

●Main

●Variables
●Pointers (address, array)
●Operators
●Instructions

●Functions

●Exceptions

I/O
Standard, files, error

STL

●Vector
●String
●...

Class

●Basics
●Inheritance
●polymorphism

templates

Preprocessor
commands

Documentation

Compilation

●Optimization
●Lib
●Makefile

Advices

Eric.Chabert@cern.ch ESIPAP – 2021 – Module 1 Programming/C++
34

Comments & documentation
To comment the end of a line: //

To comment a block of lines: /* block */

Comments are really useful

Comment what variables represents (names are not always sufficient)

Comment functional block

●Ex: reading input, computing a sum, writing an output, ...

Comment the program, the functions (.h), the classes (.h)

●Explain the goals, the input, the output, the main algo ...

Instruction; // Here starts the comment

Instructions;
/* The following lines are inactive
for(int i=0;i<10;i++){

i = i*10;
}
*/

Commenting is not a lost of time.
It will be useful for you already few weeks after coding

but also for your co-developers or future users of your code !!!
Tools for documentation formatting exists, ex: doxygen

Eric.Chabert@cern.ch ESIPAP – 2021 – Module 1 Programming/C++
35

Global view

●Main

●Variables
●Pointers (address, array)
●Operators
●Instructions

●Functions

●Exceptions

I/O
Standard, files, error

STL

●Vector
●String
●...

Class

●Basics
●Inheritance
●polymorphism

templates

Preprocessor
commands

Documentation

Compilation

●Optimization
●Lib
●Makefile

Advices

Eric.Chabert@cern.ch ESIPAP – 2021 – Module 1 Programming/C++
36

Input/Output
INPUT:

Keyboard (default)
Files
Data base
Other input device
Other programs
Other part of a program

OUTPUT:
Screen (default)
Files
Data base
Other input device
Other programs
Other part of a program

Code

Make some computation
partially based on the input

(if any) and produce
an output !

Eric.Chabert@cern.ch ESIPAP – 2021 – Module 1 Programming/C++
37

Input and Output

./prog.exe > log.stdout # redirect only cout streams

./prog.exe 1> log.stdout # idem

./prog.exe 2>log.stderr #redirect cerr streams

./prog.exe 2>/dev/null #avoid having cerr streams on screen or in a fil e

./prog.exe > log.txt 2>&1 # redirect cout & cerr streams

./prog.exe &> log.txt #idem

Eric.Chabert@cern.ch ESIPAP – 2021 – Module 1 Programming/C++
38

I/O and types

Separator can be a space or a new line

Bad input can lead to errors and stop the program
Ex: Enter a character for an integer or a float

It can also lead to unexpected behaviour
One should protect the code for this !

Correct behaviour:
Input: 1 3.4 a toto
Output: int: 1 float: 3.4 char: a string: toto
Input: 1 3.4 1 3.4
Output: int: 1 float: 3.4 char: 1 string: 3.4
“Undesired” behaviour:
Input: 1 3.4 abc toto
Output: int: 1 float: 3.4 char: a string:
Input: 1.2 a toto
Output: int: 1 float: 0.2 char: a string: toto

Eric.Chabert@cern.ch ESIPAP – 2021 – Module 1 Programming/C++
39

I/O and types

Separator can be a space or a new line

Bad input can lead to errors and stop the program
Ex: Enter a character for an integer or a float

It can also lead to unexpected behaviour
One should protect the code for this !

Correct behaviour:
Input: 1 3.4 a toto
Output: int: 1 float: 3.4 char: a string: toto
Input: 1 3.4 1 3.4
Output: int: 1 float: 3.4 char: 1 string: 3.4
“Undesired” behaviour:
Input: 1 3.4 abc toto
Output: int: 1 float: 3.4 char: a string:
Input: 1.2 a toto
Output: int: 1 float: 0.2 char: a string: toto

Eric.Chabert@cern.ch ESIPAP – 2021 – Module 1 Programming/C++
40

I/O types
“cout” can redirect all built-in types and some std library types (string, complex,...)

<< operator can also be overloaded to any user-defined type !
You can define the desired precision
Precision of the value and printing it are different things.

Eric.Chabert@cern.ch ESIPAP – 2021 – Module 1 Programming/C++
41

I/O types
List of special characters:

Eric.Chabert@cern.ch ESIPAP – 2021 – Module 1 Programming/C++
43

Files: input/output
Input file: ifstream #include <ifstream>

Reading can be performed:
Per line: getline()
Per character(s): get()
Ignore characters: ignore()
Read buffer: read(), readsome()
Depending on a format: operator>>

Check state flag:
eof(): check the end of file
good(): state of stream is good
bad(): true if a reading or writing operation fails
fail(): true is bad() and if a format error happens

Many more possible options. Check documentation !

Eric.Chabert@cern.ch ESIPAP – 2021 – Module 1 Programming/C++
44

Files: input/output
Output file: ofstream #include <ofstream>
Opening modes:

Eric.Chabert@cern.ch ESIPAP – 2021 – Module 1 Programming/C++
45

Global view

●Main

●Variables
●Pointers (address, array)
●Operators
●Instructions

●Functions

●Exceptions

I/O
Standard, files, error

STL

●Vector
●String
●...

Class

●Basics
●Inheritance
●polymorphism

templates

Preprocessor
commands

Documentation

Compilation

●Optimization
●Lib
●Makefile

Advices

Eric.Chabert@cern.ch ESIPAP – 2021 – Module 1 Programming/C++
46

Pointer & address
You can get a pointer to any object (from bool to TH1F)

Eric.Chabert@cern.ch ESIPAP – 2021 – Module 1 Programming/C++
47

Pointer & reference

You can't modify an object through a const reference
You can't make a reference refer to another object after initialization

(difference from a pointer)

Eric.Chabert@cern.ch ESIPAP – 2021 – Module 1 Programming/C++
48

Pointer & reference
Pointer Reference

Must be
initialized

no yes

Can be null (=0) yes no
Can change the
“pointed”
variable

yes no

Can change the
value of the
“pointed”
variable

yes
(no if
type* const)

yes
(no if
const type &

Can delete the
memory

yes no

There shall be no references to references, no arrays of references,

and no pointers to references.

Eric.Chabert@cern.ch ESIPAP – 2021 – Module 1 Programming/C++
49

Pointer & reference: Memory

Reference is an alias !

the size in memory of a pointer depends on the platform where the program runs

Eric.Chabert@cern.ch ESIPAP – 2021 – Module 1 Programming/C++
50

Test on pointer
It is always safer to test is a pointer is not null before accessing the pointed variable !

Could be useful to not allocate and delete twice memory (see example below)

Tests on pointers:

Pointer==0
!Pointer

Eric.Chabert@cern.ch ESIPAP – 2021 – Module 1 Programming/C++
51

Arithmetic of pointers
Several operators are also defined for pointers: ++, --

It will allow you to change the address and by consequence the pointed
“object”

The result of those operations are not guaranteed and protection have to
be written

The operation depends on the kind of object type used

var[0] var[1] var[2]

ptr
4 octets

int* ptr;
++ptr move by 4 octets

double* ptr;
++ptr move by 8 octets

Eric.Chabert@cern.ch ESIPAP – 2021 – Module 1 Programming/C++
52

Arrays
It's all that C has – It's mainly used in many C++ packages

Array don't know their own size

Often use their size as an arguments in functions

Access to elements

First element has index 0. Ex: tab[0]

Avoid arrays whenever you can:

largest source of bug in C and (unnecessarily in C++)

among the largest source of security violations:
●Possibility to access non declared memory (runtime error or unexpected
behavior)

Eric.Chabert@cern.ch ESIPAP – 2021 – Module 1 Programming/C++
53

Arrays: initialization

It is safer to always initialize the arrays !

Eric.Chabert@cern.ch ESIPAP – 2021 – Module 1 Programming/C++
54

Array: dynamical allocation

Possible memory leak ….

Always free memory:
when it will be not used anymore
when you still have access to the pointer !
when you are “owner” of the 'memory' (pb of double free)

Eric.Chabert@cern.ch ESIPAP – 2021 – Module 1 Programming/C++
55

Array and pointer

Eric.Chabert@cern.ch ESIPAP – 2021 – Module 1 Programming/C++
56

Array and pointer
void f(int pi[]) // equivalent to void f(int* pi)
{

int a[] = { 1, 2, 3, 4 };
int b[] = a; // error: copy isn’t defined for arrays
b = pi; // error: copy isn’t defined for arrays. Think of a

// (non-argument) array name as an immutable pointer
pi = a; // ok: but it doesn’t copy: pi now points to a’s first element

// Is this a memory leak? (maybe)
int* p = a; // p points to the first element of a
int* q = pi; // q points to the first element of a

}

1

pi:

a: 2 3 4

p:

1st

2nd

q: from B. Stroustrup slides

Eric.Chabert@cern.ch ESIPAP – 2021 – Module 1 Programming/C++
57

Array and pointers
char* f()
{

char ch[20];
char* p = &ch[90];
// …
*p = 'a'; // we don’t know what this’ll overwrite
char* q; // forgot to initialize
*q = 'b'; // we don’t know what this’ll overwrite
return &ch[10]; // oops: ch disappears upon return from f()

// (an infamous “dangling pointer”)
}
void g()
{

char* pp = f();
// …
*pp = 'c'; // we don’t know what this’ll overwrite

// (f’s ch is gone for good after the return from f)
}

from B. Stroustrup slides

Eric.Chabert@cern.ch ESIPAP – 2021 – Module 1 Programming/C++
58

Arrays & scope

Eric.Chabert@cern.ch ESIPAP – 2021 – Module 1 Programming/C++
59

Dynamic allocation
In some application, all memory needs cannot be determined before program

execution by defining the variables needed.

In that case, it is determined during runtime.
Ex: depends on user input(s), depends on the result of a calculus, ...

Operators new and new[]
build-in types

Classes (lib/user)

Eric.Chabert@cern.ch ESIPAP – 2021 – Module 1 Programming/C++
60

Delete: free memory
in most cases, memory allocated dynamically is only needed during specific periods of

time within a program; once it is no longer needed, it can be freed so that the memory
becomes available again for other requests of dynamic memory.

This operation should be performed when variable is still in the scope

End of a loop or function

In the destructor of a class (if memory has been allocated in the constr.)

At the end of a program

Operators delete

delete: delete a single element in memory

delete[]: delete an array of elements

Pointer is not null after delete

You could do it yourself to ensure future test on pointers

You can't delete twice memory: double free exception

If you have 2 pointers on the same element, make sure that only one of them will be
deleted

Eric.Chabert@cern.ch ESIPAP – 2021 – Module 1 Programming/C++
61

Global view

●Main

●Variables
●Pointers (address, array)
●Operators
●Instructions

●Functions

●Exceptions

I/O
Standard, files, error

STL

●Vector
●String
●...

Class

●Basics
●Inheritance
●polymorphism

templates

Preprocessor
commands

Documentation

Compilation

●Optimization
●Lib
●Makefile

Advices

Eric.Chabert@cern.ch ESIPAP – 2021 – Module 1 Programming/C++
62

int main(int argc,char** argv)
It might be convenient to “transmit” information to the program from the command line
It avoid to recompile the code to change its execution
It might avoid to read configuration file

Eric.Chabert@cern.ch ESIPAP – 2021 – Module 1 Programming/C++
63

int main(int argc,char** argv)

Eric.Chabert@cern.ch ESIPAP – 2021 – Module 1 Programming/C++
64

Call system
Invokes the command processor

Warning: the command called is system/library dependent !

Possibility to parse the output value BUT not the output of the command

Could be convenient for many applications:
Compile generated latex code
Manipulation of files/folders
...

Eric.Chabert@cern.ch ESIPAP – 2021 – Module 1 Programming/C++
65

Global view

●Main

●Variables
●Pointers (address, array)
●Operators
●Instructions

●Functions

●Exceptions

I/O
Standard, files, error

STL

●Vector
●String
●...

Class

●Basics
●Inheritance
●polymorphism

templates

Preprocessor
commands

Documentation

Compilation

●Optimization
●Lib
●Makefile

Advices

Eric.Chabert@cern.ch ESIPAP – 2021 – Module 1 Programming/C++
66

Functions
Return type (int, void)

Return one variable at maximum

Void means don't return a value

Type can be an user-defined class

Name

“Arguments” or “parameters”

(last) parameters can have default

value

Body

(in the definition)

Functions represent/implement computations/algorithms

body

Possibility to declare many functions with the same name
in the same scope if they have different arguments (number,type)

Eric.Chabert@cern.ch ESIPAP – 2021 – Module 1 Programming/C++
67

Function: call by value, ref, ...

Eric.Chabert@cern.ch ESIPAP – 2021 – Module 1 Programming/C++
68

Functions: guidance for arguments

Use call-by-value for small objects only

Use call-by const-reference for large objects

Return a result rather than modify an object through a reference
argument

Use call-by reference only when you have to

Ex: case of multiples outputs

Be careful with the use of pointers

Take care of deletion

Modification of the pointer
Modification of the pointed value

Eric.Chabert@cern.ch ESIPAP – 2021 – Module 1 Programming/C++
69

Global view

●Main

●Variables
●Pointers (address, array)
●Operators
●Instructions

●Functions

●Exceptions

I/O
Standard, files, error

STL

●Vector
●String
●...

Class

●Basics
●Inheritance
●polymorphism

templates

Preprocessor
commands

Documentation

Compilation

●Optimization
●Lib
●Makefile

Advices

Eric.Chabert@cern.ch ESIPAP – 2021 – Module 1 Programming/C++
70

Compilation chain

Sources files
=

Header files (.h)

Declaration:
Variables, enum, struct,

Classes
Functions

…

Sources files:
.cxx or .cpp

Definitions and
implementation

The main program
#include<...>

int main(){
...
return 0 ;

}

#include

Compilation

●.o files
●Or libraries:
➔Static: .a
➔Dynamic: .so (.dll)

Accessible in open source packages: dev

Give you access to at what is declare
You don't care about how it is implemented

executable
compilation

inclusion

inclusion

linking

Eric.Chabert@cern.ch ESIPAP – 2021 – Module 1 Programming/C++
71

Compilation chain [linux]

2 steps compilation

g++ -c class.cpp
g++ class.o main.cpp -o main.exe

1 step compilation

g++ class.cpp main.cpp -o main.exe

Example of one class (class.h & class.cpp file) and a main program (main.cpp)

class.cpp will be recompiled even if only main.cpp changed

First line can be omitted if only
main.cpp changed

2 steps compilation + use of libToto.so

g++ -c class.cpp
g++ -I headerDir -L libDir -lToto class.o main.cpp -o main.exe

Toto.h is in headerDir
libToto.so is in libDir
LibDir might be in $LD_LIBRARY_PATH

Eric.Chabert@cern.ch ESIPAP – 2021 – Module 1 Programming/C++
72

Compilation chain [linux]
2 steps compilation + use of ROOT lib.

g++ -c class.cpp `root-config --cflags --glibs`
g++ class.o main.cpp -o main.exe `root-config --cflags --glibs`

g++ -c class.cpp # do the same for other classes
g++ -shared -fPIC class.cpp -o libPerso.so
g++ main.cpp -o main.exe -L libPersoDir -lPerso

“3 steps” compilation with shared library

2 steps compilation + use of ROOT lib.

To know the symbols inside .so
nm -s --demangle libPoint.so

To list shared library dependencies:
ldd main.exe

Eric.Chabert@cern.ch ESIPAP – 2021 – Module 1 Programming/C++
73

Compilation chain [macOS]

2 steps compilation

g++ -c class.cpp
g++ class.o main.cpp -o main.exe

1 step compilation

g++ class.cpp main.cpp -o main.exe

Example of one class (class.h & class.cpp file) and a main program (main.cpp)

class.cpp will be recompiled even if only main.cpp changed

First line can be omitted if only
main.cpp changed

2 steps compilation + use of libToto.so

g++ -c class.cpp
g++ -I headerDir -L libDir -lToto class.o main.cpp -o main.exe

Toto.h is in headerDir
libToto.dylib is in libDir
LibDir might be in $DYLD_LIBRARY_PATH

Eric.Chabert@cern.ch ESIPAP – 2021 – Module 1 Programming/C++
74

Compilation chain [macOS]
2 steps compilation + use of ROOT lib.

g++ -c class.cpp `root-config --cflags --glibs`
g++ class.o main.cpp -o main.exe `root-config --cflags --glibs`

g++ -c class.cpp # do the same for other classes
g++ -dynamiclib class.cpp -o libPerso.dylib
g++ main.cpp -o main.exe -L libPersoDir -lPerso

“3 steps” compilation with shared library

2 steps compilation + use of ROOT lib.

To know the symbols inside .dylib
otool

Eric.Chabert@cern.ch ESIPAP – 2021 – Module 1 Programming/C++
75

Compilation chain [Windows]
•Use as Console/Terminal = "VS2013 x86 Native Tools Command
Prompt"
•Compilation of "basic.cpp" :

• cl basic.cpp /link /out:basic.exe
•Compilation with several files :

• cl /c file2.cpp
• cl file1.cpp file2.obj /link /out:file1.exe

•Compilation with static libraries *.lib :
• lib file2.obj
• cl file1.cpp /link file2.lib /out:file1.exe

•Compilation with dynamic libraries *.dll :
• cl /LD file2.cpp
• cl file1.cpp /link file2.lib /out:file1.exe

Eric.Chabert@cern.ch ESIPAP – 2020 – Module 1 Programming/C++
75

Compilation chain [Windows]
•Use as Console/Terminal = "VS2013 x86 Native Tools Command
Prompt"
•Compilation of "basic.cpp" :

• cl basic.cpp /link /out:basic.exe
•Compilation with several files :

• cl /c file2.cpp
• cl file1.cpp file2.obj /link /out:file1.exe

•Compilation with static libraries *.lib :
• lib file2.obj
• cl file1.cpp /link file2.lib /out:file1.exe

•Compilation with dynamic libraries *.dll :
• cl /LD file2.cpp
• cl file1.cpp /link file2.lib /out:file1.exe

Eric.Chabert@cern.ch ESIPAP – 2021 – Module 1 Programming/C++
76

Few compilation options
Previously listed

-o outputfile

Warning options

-Wall: combination of many warnings …

-Wfloat-equal ….

Debugging options

-g: produce debugging info that could be used by the debugger program GDB

Optimization options: following options are needed to speed-up execution time

WARNING: by default compiler try to reduce compilation time

-01 (space/speed tradoff) -O2 (speed opt.) -O3 (inline,regist.) -Os (-02 + code size reduction)

Linker options:

-L libdir -llibrary -shared (to create .so)

Compilation report:

-ftime-report -fmem-report

Preprocessor options

...

Eric.Chabert@cern.ch ESIPAP – 2021 – Module 1 Programming/C++
77

Makefile
Using variables & comments

make # or make all

Makefile

Parallelization can be useful
for big projects

make -j NofNodes

.o files are not reproduced (compilation)
if .cpp doesn't change

Eric.Chabert@cern.ch ESIPAP – 2021 – Module 1 Programming/C++
78

Global view

●Main

●Variables
●Pointers (address, array)
●Operators
●Instructions

●Functions

●Exceptions

I/O
Standard, files, error

STL

●Vector
●String
●...

Class

●Basics
●Inheritance
●polymorphism

templates

Preprocessor
commands

Documentation

Compilation

●Optimization
●Lib
●Makefile

Advices

Eric.Chabert@cern.ch ESIPAP – 2021 – Module 1 Programming/C++
79

Namespaces
A namespace is a named scope

The syntax :: is used to specify which namespace you are using and
which (of many possible) objects of the same name you are referring to

Ex: You want to create your own class “string”. But it already exists …

●std::string will refer the class implemented in the stl
●your_name_space::string will refer to your own implementation

How to create my namespace ?
You can encapsulate things (functions, classes, enums, …) as following

namespace Xproject{ // create a namespace called Xproject
const double pi = 3.14159; // variable
double square(double a) {return a*a;} // function
class X{ // class

//...
};

}

Eric.Chabert@cern.ch ESIPAP – 2021 – Module 1 Programming/C++
80

STL: Standard Template Library
C++ offers a very useful library than can be used: STL

It offers solutions in various aspects:

Defining containers

Providing algorithms

Input/Output

More details later in the course

Most of the “tools” (variables, functions, classes,...) are defined in the
namespace std

To give access to those functionalities, one need to include file

Ex: #include <iostream>

To use it, one need to specify the namespace

Ex: std::cout

Or using namespace std; and then cout (no need to precise the namespace)

Eric.Chabert@cern.ch ESIPAP – 2021 – Module 1 Programming/C++
81

Do not reinvent the wheel !
A lot of things are already available in the stl

Eric.Chabert@cern.ch ESIPAP – 2021 – Module 1 Programming/C++
82

A simple example

#include <limit>

#include <algorithm>

Let's consider the problem of looking to the smallest element of a std::vector

#include <vector>

A lot of “common problems” have been treated and implemented
by more experimented C++ developer that you:

Why won't we use their tools ?
Once you have a project, first check on the existing tools (lib) if a solution
have been already developed.
If yes, it will let you know time to concentrate on the specificity of
your current project and also time to analyze your results !

Eric.Chabert@cern.ch ESIPAP – 2021 – Module 1 Programming/C++
83

Numerics: standard functions
Headers:

#include <cmath>
There are already a lot of “tools” in the STL
that can helps you in your implementation (and tests)

From http://www.cplusplus.com/reference/cmath/

http://www.cplusplus.com/reference/cmath/

Eric.Chabert@cern.ch ESIPAP – 2021 – Module 1 Programming/C++
84

Mathematical libraries:
standard functions

Headers:
#include <cmath>

You've certainly already used some of them.
Other are less well know but might be
useful for you in a future project ...

Eric.Chabert@cern.ch ESIPAP – 2021 – Module 1 Programming/C++
85

std::vector
Vector in C++ supersedes array defined in C

There are still a lot of applications using arrays rather than std::vector

It properly deals with dynamic memory

When vector is destructed, all its elements are deleted

Important: the size of the vector is one of the data member of a
std::vector (contrary to an C array)

Size is not fixed. Can be changed during program execution !

Eric.Chabert@cern.ch ESIPAP – 2021 – Module 1 Programming/C++
86

std::vector

Eric.Chabert@cern.ch ESIPAP – 2021 – Module 1 Programming/C++
87

Ex: vector – pointer – delete
vector glob(10); // global vector – “lives” forever

vector* some_fct(int n)
{

vector v(n); // local vector – “lives” until the end of scope
vector* p = new vector(n); // free-store vector – “lives” until we delete it
// …
return p;

}

void f()
{

vector* pp = some_fct(17);
// …
delete pp; // deallocate the free-store vector allocated in some_fct()

}

it’s easy to forget to delete free-store allocated objects
so avoid new/delete when you can

from B. Stroustrup slides

Eric.Chabert@cern.ch ESIPAP – 2021 – Module 1 Programming/C++
88

std::string
std::string is a class that deals with character chains

It “supersedes” char* (inherited from C)

Many operations are easily possible

Access to size

Find a element
Retrieve a sub-string

Replace elements

Swap elements

...

Eric.Chabert@cern.ch ESIPAP – 2021 – Module 1 Programming/C++
89

string

Many others things are possible

Eric.Chabert@cern.ch ESIPAP – 2021 – Module 1 Programming/C++
90

Int/float ↔ char* conversion
Char* to number conversion : #include<stdlib.h>
Atof: convert char* to float

Atoi: convert char* to int

This is a common problem

Above solution is coming from C, but we can used C++ tools (next slide)

Eric.Chabert@cern.ch ESIPAP – 2021 – Module 1 Programming/C++
91

stringstream and conversion
#include <sstream>

Eric.Chabert@cern.ch ESIPAP – 2021 – Module 1 Programming/C++
92

Global view

●Main

●Variables
●Pointers (address, array)
●Operators
●Instructions

●Functions

●Exceptions

I/O
Standard, files, error

STL

●Vector
●String
●...

Class

●Basics
●Inheritance
●polymorphism

templates

Preprocessor
commands

Documentation

Compilation

●Optimization
●Lib
●Makefile

Advices

Eric.Chabert@cern.ch ESIPAP – 2021 – Module 1 Programming/C++
93

Preprocessor
Preprocessor directives are preceded by # (only a single line)
No use of semicolon to end the directive
The preprocessor examines the code before the compilation

#define identifier replacement (#undefine)
It only replaces any occurrence of identifier
Define a value
Define function macros with parameters
#undefine: ends the definition (could be used before changing the def.)

Conditional inclusions
#ifdef
#endif
#if #else #elif

#include
#include <header>: provided by the installed libraries (stl,...)
#include “file.h”: could be everywhere not only the installed packages

Avoid multiple
file inclusion

Eric.Chabert@cern.ch ESIPAP – 2021 – Module 1 Programming/C++
94

Preprocessor: predefined macros
Predefined macro names

Those macro might be useful for exception and error tracking

Eric.Chabert@cern.ch ESIPAP – 2021 – Module 1 Programming/C++
95

Global view

●Main

●Variables
●Pointers (address, array)
●Operators
●Instructions

●Functions

●Exceptions

I/O
Standard, files, error

STL

●Vector
●String
●...

Class

●Basics
●Inheritance
●polymorphism

templates

Preprocessor
commands

Documentation

Compilation

●Optimization
●Lib
●Makefile

Advices

Eric.Chabert@cern.ch ESIPAP – 2021 – Module 1 Programming/C++
96

Struct
A struct is a group of data elements grouped together under one name.
These data elements, known as members, can have different types and different lengths

Eric.Chabert@cern.ch ESIPAP – 2021 – Module 1 Programming/C++
97

Oriented Object
What is an object ? (Ex: vehicle)

Defined by its properties (Ex: number of wheels, ...)

Defined by its actions (Ex: driving, honking,..)

Objects can interact (Ex: blinking)
We can have many objects of the same type (instances)
We can have different category of object “inheriting” from the same

mother category (Ex: motorcycle, car, bus, truck …)

Object can interact with object from another category (Ex: driver, ...)

Definition of an object is already an “abstract concept”

Oriented Object Programming is a powerful tool that allows things that
might be difficult to implement with a procedural language

Eric.Chabert@cern.ch ESIPAP – 2021 – Module 1 Programming/C++
98

Class

Represent directly a “concept” in a program

Ex: vector, matrix, string, picture, histogram, particle, detector,...

It is a user-defined type that specifies how objects of its type can be
created and used (and deleted)

Classes are key building blocks for large programs

Eric.Chabert@cern.ch ESIPAP – 2021 – Module 1 Programming/C++
99

Minimal class
point_2D.h

point_2D.cpp

Eric.Chabert@cern.ch ESIPAP – 2021 – Module 1 Programming/C++
100

Minimal class
Compilation:

#creating a point_2D.o (compiled code)
g++ -c point_2D.cpp

#creating an executable
g++ -I. -o main.exe point_2D.o main.cpp
-I. Is needed to be able to access point_2D.h
-o is needed if you want to specify the name of your executable (a.out by default)
code is “linked” to point_2D.o

main.cpp

Eric.Chabert@cern.ch ESIPAP – 2021 – Module 1 Programming/C++
101

constructor & copy constructor
point_2D.h point_2D.cpp

main.cpp

Eric.Chabert@cern.ch ESIPAP – 2021 – Module 1 Programming/C++
102

Operators overload
Mathematical operators
+,-,*,/,%

+=,-=,*=,/=,%=

point_2D.h

point_2D.cpp

main.cpp

Eric.Chabert@cern.ch ESIPAP – 2021 – Module 1 Programming/C++
103

Operators overload
Comparison:
== , !=

>, >=,<,<=

point_2D.h

point_2D.cpp

main.cpp

Eric.Chabert@cern.ch ESIPAP – 2021 – Module 1 Programming/C++
104

Operators overload
Flux operators: <<, >>

point_2D.h

point_2D.cpp

main.cpp

Eric.Chabert@cern.ch ESIPAP – 2021 – Module 1 Programming/C++
105

Pointer & classes

Pointer “this”: pointer to the current instance of the class

Pointers to other classes:

Take care to the construction, copy constructor & destructor

Eric.Chabert@cern.ch ESIPAP – 2021 – Module 1 Programming/C++
106

Global view

●Main

●Variables
●Pointers (address, array)
●Operators
●Instructions

●Functions

●Exceptions

I/O
Standard, files, error

STL

●Vector
●String
●...

Class

●Basics
●Inheritance
●polymorphism

templates

Preprocessor
commands

Documentation

Compilation

●Optimization
●Lib
●Makefile

Advices

Eric.Chabert@cern.ch ESIPAP – 2021 – Module 1 Programming/C++
107

Inheritance
Example from http://www.cplusplus.com

Access rights

Base class

Derived classes

Rectangle & triangle have common properties
They are both polygons.

Rule of the “most restrictive access :

In principle, a derived class inherits every member
of a base class except:
its constructors and its destructor
its assignment operator members (operator=)
its friends

If class Rectangle: protected Polygon, the Public members
of polygon would have been “protected” (not accessible) in Rectangle

http://www.cplusplus.com/

Eric.Chabert@cern.ch ESIPAP – 2021 – Module 1 Programming/C++
108

Polymorphism
One of the key features of class inheritance is that a pointer to a derived class

is type-compatible with a pointer to its base class.

Polymorphism is the art of taking advantage of this simple but powerful and versatile feature

Only members inherited from Polygon can be accessed
from ppoly1 & ppoly2 and not those of the derived class

If int area() had been defined in Polygon with a different
implementation from the derived class:

Rect.area() and ppoly->area() would have given different results !!

Polymorphism might be useful by example to create a vector of pointer to polygon whatever
are the derived class of objects

Eric.Chabert@cern.ch ESIPAP – 2021 – Module 1 Programming/C++
109

Virtual methods

Int area() method can be redefined in all derived classes
ppoly1->area() refer to the method defined in Rectangle
and not in Polygone !
This wouldn't have been the case if the methods would
have not been virtual

The destructor of the base class (here Polygon), should
be virtual. If not, the destructor of the base class will be
called but not the one of the derived class, resulting in
resources leak (for memory allocated in the derived
class).

A class that declares or inherits a virtual function is called a polymorphic class

Eric.Chabert@cern.ch ESIPAP – 2021 – Module 1 Programming/C++
110

Abstract base classes
Can only be used for base classes allowed to

have virtual member function without definition
Those functions are called virtual functions
definition is replaced by “=0”

Int area() have to be defined in all derived
function inheriting from Polygon

Classes that contain at least one pure virtual function are known as
abstract base classes
Abstract base classes cannot be used to instantiate objects but pointer of

abstract base class is valid !

Eric.Chabert@cern.ch ESIPAP – 2021 – Module 1 Programming/C++
111

Static members
Static member variables only exist once in a program regardless of how

many class objects are defined!

One way to think about it is that all objects of a class share the static
variables.

Initializer

Eric.Chabert@cern.ch ESIPAP – 2021 – Module 1 Programming/C++
112

Static methods
static methods are not attached to a particular object, they can be called

directly by using the class name and the scope operator.

Like static member variables, they can also be called through objects of
the class type, though this is not recommended

In the implementation of those functions: access to pointer this and to
non static data members is forbidden

Eric.Chabert@cern.ch ESIPAP – 2021 – Module 1 Programming/C++
113

enums
Enumerated types are types that are defined with a set of custom

identifiers (=”enumerators”), as possible values.

Objects of these enumerated types can take any of these enumerators
as value

Value are always assigned to an integer numerical equivalent internally,
of which they become an alias.

If it is not specified otherwise, the integer value equivalent to the first
possible value is 0, the equivalent to the second is 1

Examples of applications:
Colors
Months
Gender
...

Eric.Chabert@cern.ch ESIPAP – 2021 – Module 1 Programming/C++
114

enums can also be defined in class

Eric.Chabert@cern.ch ESIPAP – 2021 – Module 1 Programming/C++
115

Example with ROOT: TH1F
multiple inheritance

Short extract of the public methods ….

Eric.Chabert@cern.ch ESIPAP – 2021 – Module 1 Programming/C++
116

An example: TH1F

Use of enums Data members are protected

Variable are comments
Use “rules” for name
Use of static variable
Pointers are also used

Eric.Chabert@cern.ch ESIPAP – 2021 – Module 1 Programming/C++
117

Another example:TLorentzVector
TLorentzVector is a general four-vector class, which can be used either for

the description of position and time (x,y,z,t) or momentum and energy (px,py,pz,E).

Many constructors

Overloaded operators

Inheritance

Importance of the documentation

Class: TLorentzVector
Header: #include “TLorentzVector.h”
Library: libPhysics

Eric.Chabert@cern.ch ESIPAP – 2021 – Module 1 Programming/C++
118

Type casting

const_cast Manipulates the constness of the object pointed by a
pointed, either to be set or to be removed

Type casting Can lead to code that while being syntactically correct can
cause runtime errors or give undesired results

Eric.Chabert@cern.ch ESIPAP – 2021 – Module 1 Programming/C++
119

Run-Time Type Information
(RTTI)

It can be applied on any build-in type or user-defined class
typeid uses the RTTI to keep track of the type of dynamic objects.
When typeid is applied to an expression whose type is a polymorphic class, the result is the

type of the most derived complete object

Eric.Chabert@cern.ch ESIPAP – 2021 – Module 1 Programming/C++
120

Type casting
dynamic_cast

Can be used with pointers and references to classes.
Ensure that the result of the type conversion points to a valid complete object of the

destination pointer type.
Pointer is null (==0) if the cast failed

Upcast: converting from pointer-to-derived to pointer-to-base classes
in the same way as allowed as an implicit conversion.

Downcast: converting from pointer-to-base to pointer-to-derived polymorphic classes
if -and only if- the pointed object is a valid complete object of the target type.

Eric.Chabert@cern.ch ESIPAP – 2021 – Module 1 Programming/C++
121

Friendship
Friendship methodsFriend methods A non-member method can access the private and protected

members of a class if it is declared a friend of that class

Eric.Chabert@cern.ch ESIPAP – 2021 – Module 1 Programming/C++
122

Friendship
Friendship methodsFriend class An object from a class A can access the private and protected

members of a class B if it is declared a friend of that class

Rectangle methods can access to square private/protected members

class Rectangle is a friend of class Square

BUT

class Square is a friend of class Rectangle

Be cautious while using friendship ...

Eric.Chabert@cern.ch ESIPAP – 2021 – Module 1 Programming/C++
123

Global view

●Main

●Variables
●Pointers (address, array)
●Operators
●Instructions

●Functions

●Exceptions

I/O
Standard, files, error

STL

●Vector
●String
●...

Class

●Basics
●Inheritance
●polymorphism

templates

Preprocessor
commands

Documentation

Compilation

●Optimization
●Lib
●Makefile

Advices

Eric.Chabert@cern.ch ESIPAP – 2021 – Module 1 Programming/C++
124

Function template
Allow a generalization of a given “idea” to many different input types
Ex: you want to generalize the computation of a sum.

Instead of having implementation for int, float, double …
you implement it once
Compilation error if you apply it to an incorrect type
Ex: operator + is not defined for all user-defined type
Ex: % is define for int but not for double

T: template parameter name

Explicit specification of type TImplicit specification is possible if unambiguous
Ex: Sum(2,3)
Template with many several template types is possible

Eric.Chabert@cern.ch ESIPAP – 2021 – Module 1 Programming/C++
125

Class templates

Template specialization possible
Ex: vector<bool>
Everything should be “rewritten”

“Famous” examples from the STL

Eric.Chabert@cern.ch ESIPAP – 2021 – Module 1 Programming/C++
126

Class templates

Template specialization possible
Ex: vector<bool>
Everything should be “rewritten”

“Famous” examples from the STL

Eric.Chabert@cern.ch ESIPAP – 2021 – Module 1 Programming/C++
127

Global view

●Main

●Variables
●Pointers (address, array)
●Operators
●Instructions

●Functions

●Exceptions

I/O
Standard, files, error

STL

●Vector
●String
●...

Class

●Basics
●Inheritance
●polymorphism

templates

Preprocessor
commands

Documentation

Compilation

●Optimization
●Lib
●Makefile

Advices

Eric.Chabert@cern.ch ESIPAP – 2021 – Module 1 Programming/C++
128

Exceptions
Exceptions provide a way to react to exceptional circumstances (like

runtime errors)

Protect parts of the code

Return an error message & decide what to do (abort the program ?)

Eric.Chabert@cern.ch ESIPAP – 2021 – Module 1 Programming/C++
129

Exceptions

“standard” exceptions already managed
Possibility to create your own class inheriting from

std::exception (see example above)

Eric.Chabert@cern.ch ESIPAP – 2021 – Module 1 Programming/C++
130

Global view

●Main

●Variables
●Pointers (address, array)
●Operators
●Instructions

●Functions

●Exceptions

I/O
Standard, files, error

STL

●Vector
●String
●...

Class

●Basics
●Inheritance
●polymorphism

templates

Preprocessor
commands

Documentation

Compilation

●Optimization
●Lib
●Makefile

Advices

Eric.Chabert@cern.ch ESIPAP – 2021 – Module 1 Programming/C++
131

Writing a program requires many steps
Preparatory work

Modelisation of the problem

Identification of the algorithms or tools to be used (does appropriate libraries exist ?)

Defining the specifications

Project management: task division/sharing ...

Writing the code

This is not the most time consuming tasks ….

Compilation

From simple one to more complex (use of Makefile)

Debugging (could be time consuming)

Test

Test of every part & functionality of the program

Verification of the code protection (Crash can happen during runtime. Unexpected behavior …)

Optimization [optional]

Could be done with respect to different quantity: cpu time, memory usage, desired precision, …

Utilization

Private/Restrictive/Public usage ? … feedback to come ...

Eric.Chabert@cern.ch ESIPAP – 2021 – Module 1 Programming/C++
132

Basic programming rules
Indentation of the code (more readable ..)

Respect conventions for the variable name (and even more generally)

Always initialize variables

Be cautious with
Integer division

Type Casting

Usage of array

Dynamical allocation & delete

Comments

Documentation (possibility to use tools such as “Doxygen”)

Code protection and exceptions

Test on variables, pointers ...

Eric.Chabert@cern.ch ESIPAP – 2021 – Module 1 Programming/C++
133

Computation
Developer goal is to express computation

Correctly // means code protection ...

Simply // means use the appropriate variable name, syntax, functions, lib, ..

Efficiently // different options (cpu, memory, fiability, …)

Organization of the code (cf UML)

Divide big computations into many little ones (functions, classes)

Avoid duplication

Abstraction: provide a higher level concept that hides details

Usability:

User-friendly: documentation, comments, abstraction

Organization of the data:

Input/output format

Protocols: how it communicates

Data structure

And in all cases, don't reinvent the wheel

User build-in types, if not sufficient use library types
and if it doesn't fit your goals, define your own class

For your computation, check if existing libraries does
not fit your needs

Eric.Chabert@cern.ch ESIPAP – 2021 – Module 1 Programming/C++
134

Computation
Developer goal is to express computation

Correctly // means code protection ...

Simply // means use the appropriate variable name, syntax, functions, lib, ..

Efficiently // different options (cpu, memory, fiability, …)

Organization of the code (cf UML)

Divide big computations into many little ones (functions, classes)

Avoid duplication

Abstraction: provide a higher level concept that hides details

Usability:

User-friendly: documentation, comments, abstraction

Organization of the data:

Input/output format

Protocols: how it communicates

Data structut

And in all cases, don't reinvent the wheel

User build-in types, if not sufficient use library types
and if it doesn't fit your goals, define your own class

For your computation, check if existing libraries does
not fit your needs

Eric.Chabert@cern.ch ESIPAP – 2021 – Module 1 Programming/C++
135

Programming
First step is the conception

Start with a simple & robust implementation

Than perform intensive tests:

Should produce the desired results for all legal inputs

Should give a reasonable error messages for illegal inputs

Review your code

Code cleaning: remove useless variables, ...

Style: Comments / naming & coding rules / documentation

Maintenance: use of functions / parameters instead of “magic numbers” ...

Let a colleague review your code

Only then, add features. Go to a “full scale” solution based on 1st impl.

It will avoid problems, delay, bugs, ...

Code can be used by users in a largest community ...

Eric.Chabert@cern.ch ESIPAP – 2021 – Module 1 Programming/C++
136

UML: Unified Modeling Language
General to all oriented object language

It is a modelization language

Allow to deal with complexity

It can be a first step (conception) before implementation of the code

Guidance: OMG UML: http://www.omg.org

Will be more discussed during the computing sessions

http://www.omg.org/

Eric.Chabert@cern.ch ESIPAP – 2021 – Module 1 Programming/C++
137

Optimization
Having a code properly functioning is clearly the first and most important feature !

But in many application, memory or CPU-cunsumption might be a bottleneck. In
that cases, optimization would be required.

Control of execution time (<ctime>,<chrono>, or even a simple time ./a.out)

Even if it is a whole topic by itself, this is few basic direction to follow

Prefer reference to pointer

Parameters might be reference (no copy)

Take advantage of stl containers

Avoid extensive usage of RTTI & Exception handling

Initialization is faster than assignment

Use inline functions in the most simple case

Compiler options can also help for optimization

...

