Calorimetry in high energy physics Part 1

J.-B. Sauvan

Laboratoire Leprince-Ringuet CNRS / École polytechnique

Lecture plan

What is calorimeter in HEP?

Electromagnetic and hadronic showers

Detection techniques

Calorimeter response & resolution

Closing remarks

These slides are available on the Indico page of ESIPAP There is also an extended version containing additional topics, for your curiosity

Reference

- The following lecture was built upon several lectures and books
- Lectures
 - OC. Ochando, Lectures on Calorimetry, ESIPAP 2019
 - OI. Wingerter-Seez, Calorimetry: Concepts and Examples, ESIPAP 2016
 - E. Garutti, *The art of calorimetry* (link)
 - OR. Wigmans, Calorimetry, EDIT 2011
 - OV. Boudry, La Calorimetrie, Ecole du detecteur a la mesure 2013
 - OD. Cockerill, *Introduction to Calorimeters*, Southampton Lecture 2016
 - OA. Zabi, Instrumentation for High Energy Physics, TES-HEP 2016
 - OP. Janot, Particle-Flow event reconstruction from LEP to LHC, EDIT 2011

■ Books

- OR. Wigmans, Calorimetry, Energy measurement in Particle Physics, Oxford science publication
- OC. Gruppen & B. Shwartz, *Particle detectors*, Cambridge monographs on particle physics, nuclear physics and cosmology

Reference

- The following lecture was built upon several lectures and books
- Lectures
 - OC. Ochando, Lectures on Calorimetry, ESIPAP 2019
 - OI. Wingerter-Seez, Calorimetry: Concepts and Examples, ESIPAP 2016
 - E. Garutti, *The art of calorimetry* (link)
 - OR. Wigmans, Calorimetry, EDIT 2011
 - OV. Boudry, La Calorimétrie, Ecole du détecteur à la mesure 2013
 - O.D. Cockerill, Introduction to Calorimeters, Southampton Lecture 2016
 - OA. Zabi, Instrumentation for High Energy Physics, TES-HEP 2016
 - OP. Janot, Particle-Flow event reconstruction from LEP to LHC, EDIT 2011

Books

- OR. Wigmans, Calorimetry, Energy measurement in Particle Physics, Oxford science publication
- O.C. Gruppen & B. Shwartz, *Particle detectors*, Cambridge monographs on particle physics, nuclear physics and cosmology

Lecture plan

What is a calorimeter in HEP?

Electromagnetic and hadronic showers

Detection techniques

Calorimeter response & resolution

Closing remarks

What is a calorimeter (in HEP)?

- Originally a "calorimeter" is an instrument measuring heat ("calor" in latin) produced by some reactions (chemical or physical)
 - O In HEP it is quite different
- Detection of particles through **total absorption** in a block of matter
- Complementary to tracking detectors
 - Trackers measures charged particle bending
 - O Calorimeters measure absorbed energy

■ Calorimeters can measure both charged and neutrals

Example 1: CMS ECAL

CMS ECAL crystal and module

- CMS: typical **onion-like** detector **structure**
 - Tracking + magnet (curvature of charged particles)
 - OEM and hadronic calorimeters
- CMS ECAL
 - Scintillating crystals + photodiodes

Example 2: HESS

The 5 HESS telescopes

- Explore cosmic gamma rays
 - O Interaction with the atmosphere
 - Emission of Cerenkov light
- Telescopes record this Cerenkov light on the ground

Detection principles

Calorimeter: principles

Particles interact with matter

The material depends on the particle

P

Energy lost transferred to detectable signal *Light, electric signal, etc.*

Signal collected and acquired *With electronics*

Calibration and reconstruction

Infer initial particle energy, position and type

Everything together

Build an experimental setup

Many constraints to be satisfied

Lecture plan

What is a calorimeter in HEP?

Electromagnetic and hadronic showers

Detection techniques

Calorimeter response & resolution

Closing remarks

Electromagnetic interactions with matter

Photons

Compton scattering

Ionisation

Pair production

Dominant processes

- High energy photons: Pair creation
- Below critical energy
 - Energy loss through ionisation / excitation of the medium

Shower development

- High energy particle creates a **cascade** of lower energy electrons and photons

 Otherwise Through bremsstrahlung and pair production
- When the **critical energy** is reached, secondary particles are slowly **stopped** (electrons) or **absorbed** (photons)

Energy loss and mean free path

Two dominant processes: Bremsstrahlung and pair production

Electron energy loss

$$-\left(\frac{dE}{dx}\right)_{rad} = \frac{E}{X_0}$$

$$E = E_0 e^{-x/X_0}$$

$$x(E_0/2) = X_0 \ln(2)$$

Pair prod. probability

$$\frac{dw}{dx} = \frac{1}{\lambda_{pair}} e^{-x/\lambda_{pair}}$$

$$\lambda_{pair} = \frac{9}{7} X_0$$

- $\blacksquare X_0 \approx \frac{180 \, A}{Z^2} g. \, cm^{-2}$
- \blacksquare X₀ expressed in **cm or g.cm**⁻²
 - O Conversion between the two with the material density
- Electrons loose half of their energy in about $2/3 \times X_0$
- Photons convert in about $9/7 \times X_0$

Simplistic shower model

- $= x(E_0/2) = X_0 \ln(2)$ and $\lambda_{pair} = \frac{9}{7} X_0$, and the average roughly equals to X_0
- So we consider that, on average
 - \bigcirc One particle duplication occurs every X_0 (e \rightarrow e γ or $\gamma \rightarrow$ ee)
 - O With equal sharing of energy between the two produced particles
- Stops at the critical energy $\mathbf{E} = \mathbf{E}_{c}$
 - O Reaches maximum number of particles = "shower maximum"

Some EM shower properties

- Number of particles proportional to the initial energy
 - \bigcirc Energy per particle after depth t: $E = E_0 \cdot 2^{-t}$
 - O Shower maximum $t_{max} \propto \ln(E_0/E_c)$ (X₀ units)
- Shower lateral extent
 - Narrow core
 - Early stage of the shower
 - 90% of shower contained in "Moliere" radius

$$R_{M} = \frac{21 \, MeV \times X_{0}}{E_{c}} \approx \frac{7 \, A}{Z} g \cdot cm^{-2}$$

- Tails at larger angles
 - Isotropic Compton scattering
 - Beyond shower max

Lateral profile

Importance of low energy particles

- Shower development driven by high-energy particles
- \blacksquare But phenomena at $\mathbf{E} < \mathbf{E}_c$ are important for calorimeter properties
 - OIn lead 40% of the energy deposited by electrons < 1MeV

Fractions of deposited energy for 10 GeV EM showers

Useful quantities

■ Critical energy for solids & liquids $E_c = \frac{610 \, MeV}{Z + 1.74}$

$$E_c = \frac{610 \, MeV}{Z + 1.24}$$

■ Critical energy for gaz

$$E_c = \frac{710 \, MeV}{Z + 0.92}$$

(approximate formulas) $X_0 \approx \frac{180 \, A}{7^2} g. \, cm^{-2}$ ■ Radiation length

$$X_0 \approx \frac{180 \, A}{Z^2} g. \, cm^{-2}$$

$$X_0 \approx \frac{716.4 \, A}{Z(Z+1) \ln(287/\sqrt{Z})} g.cm^{-2}$$

Compound:

$$\frac{1}{X_0} = \sum \frac{m_j}{X_j} \qquad \frac{1}{X_0} = \sum \frac{v_j}{X_j}$$

 m_i = fraction of material by mass X in g.cm⁻²

Mixture:

$$\frac{1}{X_0} = \sum \frac{v_j}{X_j}$$

v_i = fraction of material by volume X in cm

■ Shower maximum

 $(X_0 \text{ units})$

$$t_{max} = \ln(E_0/E_c) - \frac{1}{0.5}$$
 (electrons) (photons)

■ 95% longitudinal containment $(X_0 \text{ units})$

$$L(95\%)/X_0 = t_{max} + 0.08Z + 9.6$$

■ Moliere radius

(same as X_0 for compound/mixture)

$$R_{M} = \frac{21 \, MeV \times X_{0}}{E_{c}} \approx \frac{7 \, A}{Z} g. \, cm^{-2}$$

■ 95% lateral containment

$$R(95\%) = 2R_M$$

Hadronic showers

- Cascade of particles **initiated by a hadron**
 - OStrong interaction in addition to EM interaction
- Many processes involved
 - O Ionisation
 - O Hadron production (fragmentation, etc.)
 - O Charge exchange
 - $-\pi n \rightarrow \pi^0 p$
 - O Spallation, fission
 - O Nuclear de-excitation
 - O Pion decay
 - $\bigcirc \dots$

Hadronic interactions

Hadronic shower evolution

■ 1) Hard collision

- O Can travel long distance before 1st interaction
- O Similar to a MIP

■ 2) Spallation

- O Intra-nuclear cascade
- O Frees protons and neutrons
- O Nucleus excitation and deexcitation (evaporation)

"Typical" hadronic shower

Electromagnetic component

- Contributions
 - O Electrons & photons
 - \bigcirc Neutral pions (e.g. $\pi^{\circ} \rightarrow \gamma \gamma$)
- About 1/3 of π^0 produced at each nuclear interaction
- On average, **EM fraction increases with** energy $\langle f_{em} \rangle = \langle E_{EM} / E_{tot} \rangle = 1 (E / E_0)^{k-1}$

 E_0 = average energy needed for π^0 production k is related to the average multiplicity of π^0 produced at each interaction

Fluctuations in EM fraction

First hadronic interaction

EM fraction vs energy

Non-EM components

Non-EM energy breakdown

Numbers for Lead

56% ionizing particles

2/3 are protons (from spallation) <E> ~ 50-100 MeV

34% invisible

Break-up of nuclei

10% neutrons

Very soft (typically a few MeV) On average 37n per deposited GeV

	Lead	Iron
Ionization by pions	19%	21%
Ionization by protons	37%	53%
Total ionization	56%	74%
Nuclear binding energy loss	32%	16%
Target recoil	2%	5%
Total invisible energy	34%	21%
Kinetic energy evaporation neutrons	10%	5%

- A large part of energy losses is **invisible**
 - O Energy used to release protons and neutrons from nuclei
 - O Kinetic energy carried by recoil nuclei
- Also significant fraction in **evaporation neutrons**
 - O Elastic scattering (large energy transfer for small nuclei, e.g. Hydrogen)
 - O Neutron capture (sizeable energy, but late w.r.t. main shower component)

Shower development

- A hadronic shower doesn't have a profile which can be parameterized
- The size of the 1st interaction will essentially determine the EM fraction

Examples of longitudinal development

Exercises

- In the next two slides are a few exercises related to EM showers
- The solutions can be found on the ESIPAP Indico page

EM shower development in lead and iron

- Where is the shower maximum, in numbers of X_0 , for:
 - A 100 GeV electron in lead?
 - ○A 1 TeV photon in lead?
 - O A 100 GeV electron in iron?
 - OA 1 TeV photon in iron?
- How many cm of Pb or Fe are needed to stop (meaning a loss of 95% of their energy) a 100 GeV electron? And a 1 TeV photon?
- For EM showers, is it better to have lead or iron?

material	Z	A	ρ	dE/dx	λ_0	X_0	R_M	ϵ
			$[\mathrm{g/cm^3}]$	$[\mathrm{MeV/cm}]$	[cm]	[cm]	[cm]	[MeV]
Al	13	27.0	2.70	4.37	37.2	8.9	4.68	39.3
Liq. Ar	18	40.0	1.40	2.11	80.9	14.0		29.8
Fe	26	55.9	7.87	11.6	17.1	1.76	1.77	20.5
Cu	29	63.5	8.96	12.9	14.8	1.43	1.60	18.7
W	74	183.9	19.3	22.6	10.3	0.35	0.92	7.9
Pb	82	207.2	11.35	12.8	18.5	0.56	1.60	7.2
U	92	238.0	18.95	20.7	12.0	0.32	1.00	6.6
NaI			3.67	4.84	41.3	2.59		12.4
Plastic scintillator			1.032	2.03	68.5	42.9		87.1

Properties of CsI crystal

Density: 4.51 g.cm⁻³, Ec = 11.17 MeV

	Atomic Mass	X ₀ (g.cm ⁻²)	R _M (g.cm ⁻²)
Cs	132.9	8.31	15.53
	126.9	8.48	15.75

■ CsI crystal

- O Compute the radiation length of a CsI crystal (in g.cm⁻²)
- O Give X₀ in cm
- OWhat is its Moliere radius (g.cm-2 and cm)