

Interaction of particles with matter IPM Tutorial 1

Give all numerical results with three significant digits

1 - Basic calculations

- a) Compute the Lorentz factor, γ , the speed, β , and the momentum of neutral kaons (K^0) of kinetic energy $E_{kin} = 600$ MeV. Take the mass of the kaon, m $(K^0) = 497.611$ MeV/c².
- **b)** The K_S and the K_L mesons have mean lifetime $\tau = 8.954 \cdot 10^{-11}$ s and $5.116 \cdot 10^{-8}$ s, respectively. Compute their decay length when the kinetic energy is $E_{kin} = 600$ MeV and $E_{kin} = 10$ GeV.
- c) Convert the mass of the neutral K from MeV/c² to kg.

2 - Interactions of neutral particle on matter : neutrons

- a) The mean free path of fast neutrons in lead is about 5 cm. Compute the corresponding total neutron cross section in lead in barn.
- b) The mass of neutron is $m = 1.675 \cdot 10^{-27}$ kg. Convert it to GeV/c².

3 - Interactions of neutral particle on matter : photons

- a) Compute the wavelenght of the electromagnetic radiation corresponding to a photon of energy E = 50 KeV (h= $6.626 \cdot 10^{-34} \text{ m}^2 \text{ kg/s}$).
- b) Which is the most probable interaction mechanism of 50 KeV photons in lead (Z=82)?
- c) Compute the maximal kinetic energy that a photon with energy $E_{\gamma} = 800$ KeV can transfer to an electron of the matter in a Compton process. Which is the minimal energy of the final photon? For which photon scattering angle this happens?
- d) Compute the maximum energy that a photon with energy $E_{\gamma} = 800$ KeV can transfer to the final photon and the minimal energy of the scattered electron. For which photon scattering angle this happens?
- e) If the scattering angle of the final photon is 30 degrees, compute the $\beta\gamma$ of the scattered electron.