

Interaction of particles with matter IPM Tutorial2

Give all results with three significant digit.

1 - Exercise 1

- 1. Give the formula of the maximal kinetic energy that can be transferred to an atomic electron by an incoming particle in the regime where $\beta\gamma$ reduced to β , expressing explicitly, in this approximation, the energy in the center of mass of the incoming particle and the atomic electron.
- 2. Write the Bethe and Bloch formula in this regime neglecting the atomic shell and density corrections.
- 3. Explain how charged low-energy heavy particles of same velocity and different mass could be separated by measuring the energy loss in a thin detector.
- 4. For particles (Pa) of electric charge z (in unit of e) show that if the detector is thin enough the average energy loss is given by $\Delta E_{Pa} = z^2 \Delta E_{proton}$ for protons with the same velocity of Pa.
- 5. Express $\beta \gamma$ as function of the kinetic energy, T, and the mass m.
- 6. Compute $\beta \gamma$ of α particles with T=0.4 GeV (take $m_{\alpha} = 4$ GeV).
- 7. Compute the energy loss in hydrogen for protons of T=0.1 GeV using a valid approximation for the maximal kinetic energy that can be transferred to an atomic electron by an incoming particle and neglecting the atomic shell and density corrections (take $m_p = 1$ GeV).
- 8. Compute the energy loss in hydrogen for α particles with T=0.4 GeV (take $m_{\alpha}=4$ GeV).
- 9. How could these results be used to identify heavy-charge particles?

2 - Exercise 2

An accelerator produces 100 MeV protons and deuterons ($m_p = 938 \text{ MeV/c}^2$).

- 1. Show that both particles satisfy the low-energy condition $2\gamma \frac{m_e}{m_{Pa}} \ll 1.$
- 2. Compute the time of flight of both particles over a 10 m distance.
- 4. Compute the average specific energy loss in a plastic scintillator made of CH_x (specific mass = 1.03 g cm⁻³) for both particles, where x = 1.1 is the equivalent molecular H/C ratio. We will neglect the density and atomic shell corrections.
- 5. Compute for both particles the average energy loss ΔE in a 1-cm thick detector D1 made of CH_x .
- 6. What should be the approximate thickness of a second detector D2 located downstream of D1, if one wants to stop both protons and deuterons inside and measure their energies?
- 7. If D1 is separate from D2 by 10 m what should be the signal time difference between D1 and D2 for protons and deuterons?
- 8. Could you use that to separate protons from deuterons?

3 - Exercise 3

- 1. What is the maximum kinetic energy of delta rays produced by 10 GeV/c K^- mesons in liquid nitrogen (at boiling point)?
- 2. How many delta rays with kinetic energy greater between 5 and 20 MeV are produced in 2 m? The specific mass of liquid nitrogen at boiling point is 1.3954 g/cm^3 .
- 3. Can the K^- mesons of point 1. produce Cherenkov radiation in liquid nitrogen (the refractive index of liquid nitrogen is 1.205)?