
Detector Simulation

Anna Zaborowska
CERN

7-8.02.2022

Acknowledgements

Based on previous lectures:

• Detector Simulation on ESIPAP 2021 by Alberto Ribon and Witek Pokorski

• Getting Started with Geant4 course by Mihaly Novak

• Monte Carlo Techniques by Bryan Webber

1/87

https://indico.cern.ch/event/973041/contributions/4097058/
https://indico.cern.ch/event/865808/
https://indico.cern.ch/event/521914/

Detectors

2/87

CMS-PHO-GEN-2017-009-6

3/87

https://cms.cern/content/security-and-environmental-protection

Nature volume 552, pages 386–390 (2017)

4/87

https://doi.org/10.1038/nature24647

Phys. Med. 33 (2017)

5/87

http://dx.doi.org/10.1016/j.ejmp.2017.01.007

XMM Newton X-Ray telescope

6/87

https://www.esa.int/Enabling_Support/Operations/XMM-Newton_operations

CERN-PHOTO-201703-062-52

7/87

https://cds.cern.ch/images/CERN-PHOTO-201703-062-52/

Simulation

8/87

Why do we need simulation?

• Before building the detector - to design it;

• To operate the detector - background simulation, ...;

• For data analysis - to understand known and new phenomena;

9/87

What is simulation?

A “virtual” experiment.

• Take known physics;

• Start from initial conditions (particles, materials, ...);

• Calculate final conditions;

Analytically? ... No!

10/87

Buffon’s needle

Wolfram

G. Holton, Value-at-Risk

a ⩽ l sin θ

• One of the oldest problems in the field of geometrical
probability, first stated in 1777.

• Drop a needle on a lined sheet of paper and determine
the probability of the needle crossing one of the lines.

• For l < d :

P =

∫ pi

θ=0

∫ l sin θ

a=0

1

dπ
da dθ =

2l

dπ

11/87

https://mathworld.wolfram.com/BuffonsNeedleProblem.html
https://www.value-at-risk.net/monte-carlo-simulation-example-approximating-pi/

Buffon’s needle

Wikimedia Commons

Probability P is directly related to
the value of π.

12/87

https://commons.wikimedia.org/wiki/File:Buffon_needle_experiment_compressed.gif

pi estimation

• Described by Laplace in 1886.

• Take circle of radius r = 1 inscribed in
a square.

• Probability of random points falling
inside the circle: P = π

4

• How to estimate π?
◦ Draw uniformly N random points (x , y) from

(−1, 1) range.
◦ Count the C points for which x2 + y2 < 1.
◦ The ratio C

N
converges towards π/4.

Wikimedia Commons

• Can be easily extended to any distribution

M. Loem, Towards Data Science13/87

https://commons.wikimedia.org/wiki/File:Pi_30K.gif
https://towardsdatascience.com/monte-carlo-integration-and-sampling-methods-25d5af53e1

Random processes

Random (stochastic) processes are widely used as mathematical models of phenomena
that appear to vary in a random manner.

• Result cannot be specified in advance of observing it.

• Probabilities are used to describe the process.

• Discrete processes:
◦ throwing a dice f ufl;

◦ selecting a decay channel for an unstable particle;

◦ described by probabilities of events;

• Continuous processes:
◦ decay time of an unstable particle;

◦ described by probability density function (PDF);

p(x)

x1 x2 x3 x4 x5

x

p(x)

14/87

Simulation of stochastic processes

Simulation of natural (stochastic) laws = reproduction of probability distributions.

Generation of samples that follow probability distributions (f(x)) means throwing
(many) random numbers.

A sequence of random numbers is a set of numbers that have nothing to do with the
other numbers in the sequence.

In computer programs we use pseudo-random numbers.
Linear congruential generator:

In+1 = (aIn + c) mod m

e.g. m = 231, a = 1103515245, c = 12345 (for glibc (gcc) implementation)

15/87

https://sourceware.org/git/?p=glibc.git;a=blob;f=stdlib/random_r.c;hb=glibc-2.33#l364

Discrete sampling

p(x)

x1

p1

x2

p2

x3

p3

x4

p4

x5

p5

5∑
i=1

pi = 1

0 p1 p1 + p2 p1 + p2 + p3 . . . 1

ξ

x3

1. Split [0, 1] into intervals
corresponding to discrete
probabilities pi .

2. Generate a random number
ξ ∈ [0, 1].

3. Look in which interval it falls.

16/87

Continuous sampling - direct method

x

PDF (x)

0 a b

∫ b

a
p(x)x. = 1

x

CDF (x)

0

1

a b

ξ

x̂

P(x) =

∫ x

a
p(x)x.

1. For probability density function
p(x) find the cumulative
density function P(x).

2. Generate a random number
ξ ∈ [0, 1].

3. Find x = x̂ for which P(x) = ξ.

x̂ = P−1(ξ)

17/87

Continuous sampling - accept–reject method

M. Loem, Towards Data Science

1. Generate two random numbers
ξx ∈ [0, 1] and ξy ∈ [0, 1].

2. Scale them if necessary:
xi = ξx , yi = Lξy .

3. If yi > p(xi) ⇒ reject xi ,
If yi ⩽ p(xi) ⇒ accept xi .

4. Fraction of accepted points is
equal to fraction of area below
curve p(x).

18/87

https://towardsdatascience.com/monte-carlo-integration-and-sampling-methods-25d5af53e1

Simple example: Particle decay in flight

• Spontaneous process of an unstable particle.

• Decay time is a random value with probability density function

f (t) =
1

τ
exp

(
− t

τ

)
, t ⩾ 0

τ is the mean life of particle

• Probability that particle decays before time T is given by CDF

F (t) = 1− exp
(
− t

τ

)
which can be used to sample directly.

ξ1 ∈ [0, 1] → t̂ = τ ln(1− ξ1)

• Random angles are chosen for decay products, e.g. θ1 and θ2 (in rest
frame).

• Decay products are boosted to lab frame.

t

f (t)

JabberWok, Wikipedia

`

`

JabberWok, Wikipedia

19/87

https://commons.wikimedia.org/w/index.php?curid=16169488
https://commons.wikimedia.org/w/index.php?curid=16169552

Monte Carlo methods

• Monte Carlo name coined by Ulam and Metropolis in 1949 (Manhattan project).

• Recognition of newly invented computer power to application of statistical sampling
to solve .

• Metropolis (1948): First actual Monte Carlo calculations using a computer
(ENIAC).

• Berger (1963): First complete coupled electron-photon transport code that became
known as ETRAN.

• Exponential growth since the 1980’s with the availability of computers.

20/87

Monte Carlo codes

Non-exhaustive list of Monte Carlo codes

• EM physics
◦ ETRAN (Berger & Seltzer; NIST)

◦ EGS4 (Nelson, Hirayama, Rogers; SLAC)

◦ EGS5 (Hirayama et al.; KEK/SLAC)

◦ EGSnrc (Kawrakow & Rogers; NRCC)

◦ Penelope (Salvat et al.; U. Barcelona)

• Hadronic physics / general purpose
◦ Fluka (Ferrari et al., CERN/INFN)

◦ Geant4 (Geant4 Collaboration)

◦ MARS (James & Mokhov; FNAL)

◦ MCNPX / MCNP5 (LANL)

◦ PHITS (Niita et al.; JAEA)

21/87

Geant4

Geant4 is a toolkit used to simulate particle passage through matter.

• Non-deterministic:
◦ no equations to be solved,
◦ use of random numbers to reproduce distributions.

• General code:
◦ allows to describe different geometries (shapes, materials),
◦ contains distributions describing various physics processes.

• Finds application in many areas:
◦ high energy physics,
◦ astrophysics,
◦ medical physics,
◦ industry.

• Toolkit:
◦ no main program, set of tools that allows to build user

applications.

54.46 ps22/87

How does simulation work?

• Track one particle at a time.

• Consider particle passage in steps.

• For each step:
◦ Determine step length and interaction (if

any)from cross-sections (probabilities) of
physics processes, and geometrical boundaries.

◦ Deposit energy.

◦ If physics process creates new particles, add
them to the list.

◦ Move particle to new position, taking into
account electromagnetic field.

◦ If particle has energy E > 0 and is still within
detector (“world”), repeat. Otherwise, take
new particle.

start point

ste
p

zero energy
end point:

geometry
boundary

geometry
boundary

physics interaction

23/87

Geant4 application

Geant4 is a toolkit = user builds a C++ application, using Geant4 classes.

Basic information on Geant4 is presented, find more in documentation.

There are few components that are mandatory to use, and many more that are optional
and depend on user needs.

We will focus on a simple application to understand
all the mandatory components.

At the end, we will get results of simulation and
compare it to experimental data (for this we’ll add
few optional components).

Source code of our tutorial application
Application adapted from Getting Started with Geant4 course by Mihaly Novak

24/87

https://geant4.web.cern.ch/support/getting_started
https://gitlab.cern.ch/azaborow/geant4tutorialapplication/
https://indico.cern.ch/event/865808/

Installation

Application requires Geant4 installation, with Qt if visualization is used.

How to install and use Geant4, useful links:

• Installation Guide - how to install, on Linux, MacOS, and Windows.

• Application Developers Guide - how to build an application.

• Geant4 forum - for help on all aspects.

Finally, gnuplot is used to plot the results (comparison of experimental and simulation
data).

25/87

https://geant4.web.cern.ch/support/getting_started
http://geant4-userdoc.web.cern.ch/geant4-userdoc/UsersGuides/InstallationGuide/html/index.html
http://cern.ch/geant4-userdoc/UsersGuides/ForApplicationDeveloper/html/index.html
https://geant4-forum.web.cern.ch/
http://www.gnuplot.info/

Key elements

Key elements of Geant4 application:

1. How detector (medium) looks like;

2. What physics processes should be taken into account;

3. What particle(s) enter this detector;

4. What is the result of simulation (optional, it is not mandatory but why do we run
simulation if not for results?);

Our application defines those elements in following classes:

Mandatory:

• YourDetectorConstruction

• YourPhysicsList

• YourPrimaryGeneratorAction

• YourActionInitialization

Additional:

• YourDetectorMessenger

• YourEventAction

• YourRunAction

• YourSteppingAction

26/87

0. Main

27/87

G4RunManager

G4RunManager object:

• It’s the only mandatory manager object that user needs to create. All others
(G4EventManager, G4SteppingManger, etc.) are created and deleted
automatically.

• It’s role is to control the flow of a run, the top level simulation unit

• It sets the initialisation of the run i.e. geometry building, setting up the simulation
environment

• All information needs to be given to the G4RunManager by the user through the
interfaces provided by the Geant4 toolkit (we will see them one by one):
◦ G4VUserDetectorConstruction (mandatory): how the geometry should be constructed (built)
◦ G4VUserPhyscsList (mandatory): all the particles and their physics interactions to be simulated
◦ G4VUserActionInitialization (mandatory):

• G4VUserPrimaryGeneratorAction (mandatory): how the primary particle(s) in an event should be produced
• additional, optional user actions (G4UserRunAction, G4UserEventAction, G4UserSteppingAction, etc..)

Note:
G4RunManager for Geant4⩾10.7 can be created with type G4RunManagerType::Serial for serial execution,
G4RunManagerType::MT for multi-threaded, G4RunManagerType::Tasking for tasking mechanism.

28/87

Main: yourMainApplication.cc

22 int main(int argc, char** argv) {

44 // Construct the default run manager
45 auto runManager =
46 G4RunManagerFactory::CreateRunManager(G4RunManagerType::Serial);

49 // Set (MANDATORY) User initialization classes:
50 // = 1. G4VUserDetectorConstruction
51 // = 2. G4VUserPhysicsList
52 // = 3. G4VUserActionInitialization (that contains G4VUserPrimaryGeneratorAction)

55 YourDetectorConstruction* detector = new YourDetectorConstruction;
56 runManager->SetUserInitialization(detector);

60 const G4String plName = "FTFP_BERT_EMZ";
61 G4PhysListFactory plFactory;
62 G4VModularPhysicsList *pl = plFactory.GetReferencePhysList(plName);
63 runManager->SetUserInitialization(pl);

72 runManager->SetUserInitialization(new YourActionInitialization(detector));

105 delete runManager;
106 return 0;
107 }

29/87

1. Detector geometry

30/87

Detector geometry

Material:

• made of elements, which are made of isotopes,

• with macroscopic properties (density, state, pressure, ...).

Solid:

• box, sphere, tube, ...,

• boolean operations on solids.

Logical volumes:

• combine solid with material,

• attach daughter volumes.

Physical volumes:

• placement of logical volume,

• can reuse same logical volume.

31/87

Elements and isotopes

Elements and isotopes:
• G4Element object without specifying the isotope composition:

◦ need to give: name, symbol, Z and A (effective atomic number and molar mass)
◦ isotopes will be automatically added with natural abundances (A won’t be updated)

• G4Element object by specific (non-natural) isotope composition:

◦ element object must be created: name, symbol, number of isotopes
◦ isotope objects must be created: name, number of protons and nucleons
◦ isotopes need to be added by their relative abundance

32/87

Material - element

Simple G4Material object definition:
• “simple”: the material contains only one element and the corresponding G4Element
object is not provided:

◦ the corresponding G4Element object will be automatically created (with natural isotope abundance)
◦ need to give: name, density of the material, Z and A (effective atomic number and molar mass) of the

single G4Element
◦ what happens if we want the single element to have non-natural isotope abundance e.g. the previously

created enriched uranium (see later)

33/87

Material - molecule

G4Material object definition as chemical molecule:
• G4Material object definition as chemical molecule:
• molecules build up from (several) elements with composition specified by the
number of element (e.g. water = H2O)

• accordingly, G4Material object can be created by adding G4Element objects to it
together with their composition number:

34/87

Material - mixture

G4Material object definition as mixture:

• mixture of elements (G4Element), mixture of other materials (G4Material) or even
mixture of elements and materials

• similar to molecules with the differences: components can be other materials not
only elements the ratio of the components must be given as “fractional mass” not
as “number of atoms”

• mixture of elements example: using the AddElement method

35/87

Material - NIST database

• The data base includes more than 3000 isotopes

• Isotopic composition of elements (Z = [1-108]) with their natural isotopic
abundance: using the NIST Atomic Weights and Isotopic Compositions data base

• NIST elements can be obtained easily from the Geant4 NIST data base by using
their symbol or Z - atomic number:
◦ the corresponding G4Isotope objects will be automatically built
◦ “find or build” i.e. avoids duplication of element objects

• Large collection of pre-defined materials:
◦ pre-defined: density, elemental composition (with the pre-defined natural isotopic composition), mean

ionization energy, density effect parameters, etc.

36/87

http://physics.nist.gov/Comp

Material - NIST database

• Use these pre-defined materials whenever possible:
◦ guaranties high accuracy for many derived parameters (consistency)
◦ full list of defined materials

• NIST and more predefined materials (318 at the
moment):
◦ single element NIST materials with Z = [1− 98] and named after the

atomic symbol:
aluminum (G4_Al), silicon (G4_Si), gold (G4_Au), etc.

◦ compound NIST materials:
G4_AIR, G4_ALUMINUM_OXIDE, G4_MUSCLE_SKELETAL_ICRP, etc.

◦ HEP and nuclear materials:
liquid argon G4_lAr, lead tungstate G4_PbWO4, G4_STAINLESS-STEEL,
etc.

◦ space materials:
G4_KEVLAR, G4_NEOPRENE, etc.

◦ bio-chemical materials:
the DNA bases G4_ADENINE, G4_GUANINE, G4_CYTOSINE, G4_THYMINE,
etc.

37/87

https://geant4-userdoc.web.cern.ch/UsersGuides/ForApplicationDeveloper/html/Appendix/materialNames.html

Material - NIST database

• Use these pre-defined materials whenever possible:
◦ can be obtained from the Geant4 NIST data base by using their name
◦ their name starts with the G4_ prefix (see previous slide)
◦ full list of defined materials can be found in Developers Guide

38/87

https://geant4-userdoc.web.cern.ch/UsersGuides/ForApplicationDeveloper/html/Appendix/materialNames.html

Detector geometry, materials: src/YourDetectorConstruction.cc

20 YourDetectorConstruction::YourDetectorConstruction()
21 : G4VUserDetectorConstruction(),

24 // set default target material to be Silicon
25 SetTargetMaterial("G4_Si");

31 }

39 void YourDetectorConstruction::SetTargetMaterial(const G4String& matName) {
40 // try to find the material in the NIST DB
41 fTargetMaterial = G4NistManager::Instance()->FindOrBuildMaterial(matName);

49 }

55 G4VPhysicalVolume* YourDetectorConstruction::Construct() {
56 // I. CREATE MATERIALS:
57 // (note that we use fixed material here one could use messenger to set them)
58 // 1. Material for the world: low density hydrogen defined by "hand"
59 G4double zet = 1.0;
60 G4double amass = 1.01*CLHEP::g/CLHEP::mole;
61 G4double density = CLHEP::universe_mean_density;
62 G4double pressure = 3.e-18*CLHEP::pascal;
63 G4double tempture = 2.73*CLHEP::kelvin;
64 G4Material* materialWorld = new G4Material("Galactic", zet, amass, density,
65 kStateGas, tempture, pressure);
66 // 2. Material for the target: material pointer stored in fTargetMaterial
67 G4Material* materialTarget = fTargetMaterial;

118 }

39/87

Geometry description

Geant4 detector geometry description is composed of three conceptual layers:

• solid,

• logical volume,

• physical volume.

• Users need to construct all those directly in their user code (Detector Construction)
by new, they get registered at construction in the corresponding store
(G4SolidStore, G4LogicalVolumeStore, G4PhysicalVolumeStore) which will
take care of deallocation of the corresponding memory at the end (if needed).

• More information on the detector geometry description can be found in the
corresponding documentation.

40/87

http://geant4-userdoc.web.cern.ch/geant4-userdoc/UsersGuides/ForApplicationDeveloper/html/Detector/Geometry/geometry.html

Solid: Box

G4VSolid:
• the shape of the Geant4 detector
geometry builds up from
geometrical primitives, all derived
from the G4VSolid base class that
provides interface to:
◦ compute distances between the shape

and a given point
◦ check whether a point is inside the shape
◦ compute the extent of the shape
◦ compute the surface normal to the shape

at a given point

• More information in
documentation.

41/87

https://geant4-userdoc.web.cern.ch/UsersGuides/ForApplicationDeveloper/html/Detector/Geometry/geomSolids.html#solids

Logical volume

G4LogicalVolume:
• encapsulates all information of a detector volume element except its real physical
position (position and rotation):
◦ the shape and dimensions of the volume i.e. a G4VSolid
◦ the material of the volume i.e. G4Material that is the minimally required additional information beyond

the solid
◦ additional, optional information such as magnetic field (G4FieldManager) or user defined limits

(G4UserLimits), etc.

• More information in documentation.

G4LogicalVolume(G4VSolid* pSolid, // Its solid
G4Material* pMaterial, // Its material
const G4String& Name, // Its name
G4FieldManager* pFieldMgr=0,
G4VSensitiveDetector* pSDetector=0,
G4UserLimits* pULimits=0,
G4bool Optimise=true)

42/87

https://geant4-userdoc.web.cern.ch/UsersGuides/ForApplicationDeveloper/html/Detector/Geometry/geomLogical.html

Physical volume

G4VPhysicalVolume:

• the abstract base class for representation of physically positioned volumes

• a volume is positioned in a mother volume relative to its coordinate system
• the positioning can be:

◦ placement volume: one positioned volume, i.e. one G4VPhysicalVolume object represents one ‘real”
volume

◦ repeated volume: one volume positioned many times, i.e. one G4VPhysicalVolume object represents
multiple copies of “real” volumes (reduces memory by exploiting symmetry)

• Replica volumes: the multiple copies of the volume are all identical
• Parameterised volumes: the multiple copies of a volume can be different in size, solid type, or material that can

all be parameterised as a function of the copy number

• Here focus on placement volume, more information in documentation.

43/87

http://geant4-userdoc.web.cern.ch/geant4-userdoc/UsersGuides/ForApplicationDeveloper/html/Detector/Geometry/geomPhysical.html

Physical volume

G4PVPlacement:

• represent one positioned G4LogicalVolume

• created by associating a G4LogicalVolume with a transformation that defines the
position of the volume in the mother volume

• the transformation can be given either as a single G4Transform3d object or as
combination of rotation G4RotationMatrix and translation G4ThreeVector

• a mother volume must be specified for all volumes except the “world”

• (one of the two) constructor with the rotation matrix and translation vector:

G4PVPlacement(G4RotationMatrix* pRot, // Rotation with respect to its mother volume
const G4ThreeVector& tlate, // Translation with respect to its mother vol
G4LogicalVolume* pCurrentLogical, // Its logical Volume
const G4String& pName, // Its name
G4LogicalVolume* pMotherLogical, // Its mother volume
G4bool pMany, // Can be set to false, not used
G4int pCopyNo, // Its identifier
G4bool pSurfChk=false) // Check for overlaps

44/87

G4VUserDetectorConstruction

G4VUserDetectorConstruction interface is provided by the Geant4 toolkit to
describe the geometrical setup, including all volumes with their shape, position and
material definition

• Its G4VUserDetectorConstruction::Construct() interface method (pure
virtual) is invoked by the G4RunManager at initialisation.

• It’s mandatory to implement a derived class (YourDetectorConstruction in our
example) from this base class.
◦ create all materials will need to use in your geometry
◦ describe your detector geometry by creating and positioning all volumes
◦ return the pointer to the root of your geometry hierarchy i.e. the pointer to your “World”

G4VPhysicalVolume

• User object YourDetectorConstruction needs to be created and registered in
G4RunManager object by using the G4RunManager:SetUserinitialization
method.

Note: For non-serial execution of Geant4 (multithreaded, tasking), Construct() interface method is invoked
only by the master thread in case (i.e. only one detector object), while the other ConstructSDandField()
interface method is invoked by each worker threads (i.e. thread local objects created).

45/87

Detector geometry, dimensions: src/YourDetectorConstruction.cc

20 YourDetectorConstruction::YourDetectorConstruction()
21 : G4VUserDetectorConstruction(),

26 // set default thickness
27 fTargetThickness = 1.0*CLHEP::cm;

31 }

55 G4VPhysicalVolume* YourDetectorConstruction::Construct() {

69 // II. CREATE GEOMETRY:
70 // 1. Define target and world sizes
71 G4double targetXSize = fTargetThickness;
72 G4double targetYZSize = 1.25*targetXSize;
73 G4double worldXSize = 1.1*targetXSize;
74 G4double worldYZSize = 1.1*targetYZSize;

118 }

46/87

Detector geometry, world: src/YourDetectorConstruction.cc

55 G4VPhysicalVolume* YourDetectorConstruction::Construct() {

76 // 2. Create the world and the target (both will be box):
77 // a. world
78 G4Box* worldSolid
79 = new G4Box("solid-World", // name
80 0.5*worldXSize, // half x-size
81 0.5*worldYZSize, // half y-size
82 0.5*worldYZSize); // half z-size
83 G4LogicalVolume* worldLogical
84 = new G4LogicalVolume(worldSolid, // solid
85 materialWorld, // material
86 "logic-World"); // name
87 G4VPhysicalVolume* worldPhysical
88 = new G4PVPlacement(nullptr, // (no) rotation
89 G4ThreeVector(0.,0.,0.), // translation
90 worldLogical, // its logical volume
91 "World", // its name
92 nullptr, // its mother volume
93 false, // not used
94 0); // cpy number

118 }

47/87

Detector geometry, target: src/YourDetectorConstruction.cc

55 G4VPhysicalVolume* YourDetectorConstruction::Construct() {

95 // b. target
96 G4Box* targetSolid
97 = new G4Box("solid-Target", // name
98 0.5*targetXSize, // half x-size
99 0.5*targetYZSize, // half y-size

100 0.5*targetYZSize); // half z-size
101 G4LogicalVolume* targetLogical
102 = new G4LogicalVolume(targetSolid, // solid
103 materialTarget, // material
104 "logic-Target"); // name
105 G4VPhysicalVolume* targetPhysical
106 = new G4PVPlacement(nullptr, // (no) rotation
107 G4ThreeVector(0.,0.,0.), // translation
108 targetLogical, // its logical volume
109 "Target", // its name
110 worldLogical, // its mother volume
111 false, // not used
112 0); // cpy number

118 }

48/87

2. Physics interactions

49/87

Main electromagnetic processes

50/87

Hadronic interactions from TeV to MeV

D. Wright, Hadronic Physics

String model Intra-nuclear cascade model

Pre-equilibrium (precompound) model Equilibrium (evaporation) model

51/87

 https://indico.cern.ch/event/776050/contributions/3240660/attachments/1781020/2897453/HadPhys1SaoPaulo.pdf

Partial hadronic model inventory

D. Wright, Hadronic Physics

52/87

 https://indico.cern.ch/event/776050/contributions/3240660/attachments/1781020/2897453/HadPhys1SaoPaulo.pdf

Physics list

A. Dotti, Detector Simulations

• Geant4 is a toolkit used in various
areas, with different needs for precision,
speed, models.

• No single “physics” that fits everyone
needs.

• Atomistic approach — provide
independent (and alternative) processes.

• Combine particle definitions and
processes into physics lists.

53/87

https://indico.cern.ch/event/669093/contributions/2821506/attachments/1719502/2775261/Lecture-Pisa20181.pdf

G4VUserPhysicsList

G4VUserPhysicsList interface is provided by the Geant4 toolkit to describe the
physics setup, including definition of all particles and their physics interactions,
processes.

• Its G4VUserPhysicsList::ConstructParticle() and ::ConstructProcess()

interface methods (pure virtual) are invoked by the G4RunManager (actually by the
G4RunManagerKernel and process construction is invoked indirectly) at
initialisation

• It’s mandatory to use a derived class from this base class with implementation of
the particles in ConstructParticle() and processes in ConstructProcess()

methods.

• Manual (user) construction of a physics list is recommended only for advanced
users!

• Geant4 provides possibilities with different level of granularity to build up or obtain
a complete pre-defined physics list.

• Physics list needs to be created and registered in G4RunManager object by using
the G4RunManager:SetUserinitialization method. It’s just few lines of code!

54/87

Physics list: yourMainApplication.cc

Modular physics lists are ready-to-use, complete lists with particles, processes, and
transport defined.

Geant4 can only recommend certain physics list for usual use cases, it’s up to user to
validate them for custom application.

Documentation of physics lists.

60 const G4String plName = "FTFP_BERT_EMZ";
61 G4PhysListFactory plFactory;
62 G4VModularPhysicsList *pl = plFactory.GetReferencePhysList(plName);
63 runManager->SetUserInitialization(pl);

FTFP BERT physics list is recommended for high energy physics.
EMZ is collection of most accurate electromagnetic models.

55/87

https://geant4-userdoc.web.cern.ch/UsersGuides/PhysicsListGuide/html/index.html

3. Primary particles

56/87

Primary particles

• Primary particle(s) means particle(s) with which you start an event.
◦ E.g. particles made by the primary p-p collision, an alpha particle emitted from radioactive material, a

gamma-ray from treatment head, etc.
◦ Then Geant4 tracks these primary particles in your geometry with physics interactions and generates

secondaries, detector responses and/or scores.

• Primary vertex has position and time. Primary particle has a particle ID,
momentum and optionally polarization. One or more primary particles may be
associated with a primary vertex. One event may have one or more primary vertices.

• Generation of primary vertex/particle is one of the user-mandatory tasks.
G4VUserPrimaryGeneratorAction is the abstract base class to control the
generation.
◦ Actual generation should be delegated to G4VPrimaryGenerator class. Several concrete

implementations, e.g. G4ParticleGun, G4GeneralParticleSource, are provided.

57/87

Particle gun vs. General Particle Source

Particle Gun
G4ParticleGun

• Simple and näıve

• Shoot one track at a
time

• Easy to handle.
◦ Use set methods to

alternate track–by–track
or event–by–event
values.

General Particle Source
G4GeneralParticleSource

• Powerful
• Controlled by UI commands.

◦ Almost impossible to control through set methods

• Capability of shooting particles from a surface of a
volume.

• Capability of randomizing kinetic energy, position and/or
direction following a user- specified distribution
(histogram).

• If you need to shoot primary particles from a surface of a volume, either outward or
inward, GPS is the choice.

• If you need a complicated distribution, not flat or Gaussian, GPS is the choice.

• Otherwise, use Particle Gun.

58/87

General Particle Source

Documentation of GPS

59/87

https://geant4-userdoc.web.cern.ch/UsersGuides/ForApplicationDeveloper/html/GettingStarted/generalParticleSource.html?highlight=gps#geant4-general-particle-source

G4VUserPrimaryGeneratorAction

G4VUserPrimaryGeneratorAction interface is provided by the Geant4 toolkit to
describe how the primary particle(s) in an event should be produced

• G4VUserPrimaryGeneratorAction::GeneratePrimaries() interface method
(pure virtual) is invoked by the G4RunManager during the event-loop (in its
G4RunManager::GenerateEvent() method).

• It’s mandatory to implement a derived class (YourPrimaryGeneratorAction in
our example) from this base class.
◦ describe how the primary particle(s) in an event should be produced
◦ we will use a G4ParticleGun object, provided by the Geant4 toolkit, to generate primary particles: one

particle per event with defined kinematics

• User object YourPrimaryGeneratorAction needs to be created within user
implementation of G4VUserActionInitialization::Build() method, e.g.
YourActionInitialization::Build().

Note:

• the Detector-Construction and the Physics-List need to be created directly in the main program and
registered directly in the G4RunManager object

• all User-Actions needs to be created and registered in the User-Action-Initialisation (including the only
mandatory Primary-Generator-Action as well as all other, optional User-Actions)

60/87

G4VUserActionInitialization

G4VUserActionInitialization interface is provided by the Geant4 toolkit to create
and register user actions.
• That includes:

◦ the only one mandatory G4VUserPrimaryGeneratorAction user action.
◦ all other optional user actions (G4UserRunAction, G4UserEventAction, etc..).

• Its G4VUserActionInitialization::Build() interface method (pure virtual) is
invoked by the G4RunManager at initialisation

• It’s mandatory to implement a derived class (YourActionInitialization) from
this base class.
◦ Primary particle generator (object of YourPrimaryGeneratorAction class) needs to be created in

YourActionInitialization::Build() method.
◦ All optional user actions may also be created.

• User object YourActionInitialization needs to be created and registered in
G4RunManager object by using the G4RunManager:SetUserinitialization
method.

Note:
• For non-serial execution, Build() method is executed by every worker thread, while BuildForMaster()

method is invoked only by the master thread.

• The only user action that is supposed to be created in BuildForMaster() method, is the implementation of
the G4UserRunAction for the master thread (e.g. to create and merge the output of simulation).

61/87

Actions initialization: src/YourActionInitialization.cc

13
14 YourActionInitialization::YourActionInitialization(YourDetectorConstruction* det)
15 : G4VUserActionInitialization(),
38
39 // Create all User Actions here:
40 // - for sequential mode (will be invoked immediately by the only one G4RunManager
41 // when the ActionInitialization object is registered in it in the main)
42 // - for worker threads (will be invoked later by all worker G4RunManager-s)
43 void YourActionInitialization::Build() const {
44 // Set UserPrimaryGeneratorAction
45 YourPrimaryGeneratorAction* primaryAction = new YourPrimaryGeneratorAction(fYourDetector);

54 SetUserAction(new YourSteppingAction(fYourDetector, eventAction));

DetectorConstruction pointer is propagated down to user actions because primary
generator needs information from the detector (it defines where particles are created, so
they enter the detector).

62/87

Primary partcles: src/YourPrimaryGeneratorAction.cc

9
10 YourPrimaryGeneratorAction::YourPrimaryGeneratorAction(YourDetectorConstruction* det)
11 : G4VUserPrimaryGeneratorAction(),
12 fYourDetector(det),
13 fParticleGun(nullptr) {
14 // create the particle-gun object
15 G4int nParticle = 1;
16 fParticleGun = new G4ParticleGun(nParticle);
17 SetDefaultKinematic();
25
26 void YourPrimaryGeneratorAction::GeneratePrimaries(G4Event* evt) {
27 fParticleGun->GeneratePrimaryVertex(evt);
30
31 void YourPrimaryGeneratorAction::SetDefaultKinematic() {
32 //
33 // default primary particle: 30 [MeV] e- perpendicular to the target
34 G4ParticleDefinition* part = G4ParticleTable::GetParticleTable()->FindParticle("e-");
35 fParticleGun->SetParticleDefinition(part);
36 fParticleGun->SetParticleMomentumDirection(G4ThreeVector(1., 0., 0.));
37 fParticleGun->SetParticleEnergy(30.*CLHEP::MeV);
38 UpdatePosition();
41
42 // needs to be invoked for all workers at the begining of the run: user might
43 // have changed the target thickness
44 void YourPrimaryGeneratorAction::UpdatePosition() {
45 fParticleGun->SetParticlePosition(
46 G4ThreeVector(fYourDetector->GetGunXPosition(), 0.0, 0.0));

63/87

4. Storing the results

64/87

User Actions

Mandatory users actions base classes:

• G4VUserActionInitialization

• G4VUserPrimaryGeneratorAction

Optional user action base classes:
• Can work on various levels:

◦ G4UserRunAction
◦ G4UserEventAction
◦ G4UserTrackingAction
◦ G4UserSteppingAction
◦ G4UserStackingAction

• Fully customizable (empty by default)
◦ provide BeginOf... and EndOf... methods called

automatically by the kernel

65/87

Simulation results

All mandatory components allow to implement a working simulation.

However, there is no output of the simulation (no measurement).

In experiments, particle passage through detector can be detected thanks to its
interactions in certain regions.

This must be implemented in our application: in which regions, what particles, how is
it stored.

Different ways of implementation are illustrated in basic example B4 of Geant4.

Our example application uses purely user actions. Different methods include use of
sensitive detector or scorers.

66/87

https://geant4-userdoc.web.cern.ch/UsersGuides/ForApplicationDeveloper/html/Examples/BasicCodes.html#exmpbasic-b4
https://geant4-userdoc.web.cern.ch/UsersGuides/ForApplicationDeveloper/html/Detector/hit.html#sensitive-detector
https://geant4-userdoc.web.cern.ch/UsersGuides/ForApplicationDeveloper/html/Detector/commandScore.html

Simulation results: user actions

start point

ste
p

zero energy
end point:

geometry
boundary

geometry
boundary

physics interactionFor each step:

• check if it is located within our target volume,

• if yes: get value of the energy deposited in medium,
and add it to per-event mean calculation.

For each event:

• accumulate energy deposited in single steps within target,

• at the end of event processing add entry to a histogram.

For each run:

• create an output file and a histogram to store energy deposit,

• at the end of run scale the histogram and store it.

67/87

Stepping action: src/YourSteppingAction.cc

17 // Score only if the step was done in the Target:
18 // - cllect energy deposit for the mean (per-event) energy deposit computation
19 // - same for the charged particle track length
20 void YourSteppingAction::UserSteppingAction(const G4Step* theStep) {
21 // Score steps done only in the target: i.e. pre-step point was in target
22 if (theStep->GetPreStepPoint()->GetTouchableHandle()->GetVolume()
23 != fYourDetector->GetTargetPhysicalVolume()) return;
24 // Step was done inside the Target so do scoring:
25 //
26 // Get the energy deposit
27 const G4double eDep = theStep->GetTotalEnergyDeposit();
28 // add current energy deposit to the charged particle track length per-event
29 fYourEventAction->AddEnergyDepositPerStep(eDep);
30 }

68/87

Event action: src/YourEventAction.cc

15
16 // Beore each event: reset per-event variables
17 void YourEventAction::BeginOfEventAction(const G4Event* /*anEvent*/) {
18 fEdepPerEvt = 0.0;
21
22 // After each event:
23 // fill the histogram with energy deposited in this event
24 void YourEventAction::EndOfEventAction(const G4Event* /*anEvent*/) {
25 // Get analysis manager
26 auto analysisManager = G4AnalysisManager::Instance();
27 // Fill histogram
28 analysisManager->FillH1(0, fEdepPerEvt);

69/87

Run action: src/YourRunAction.cc

13 YourRunAction::YourRunAction(YourDetectorConstruction* det, YourPrimaryGeneratorAction* prim)
14 : G4UserRunAction() {
15 // Create analysis manager
16 auto analysisManager = G4AnalysisManager::Instance();
17 analysisManager->SetDefaultFileType("csv");
18 analysisManager->SetFileName("Hist_Edep.csv");
19 }

23 void YourRunAction::BeginOfRunAction(const G4Run*) {
24 // Get analysis manager
25 auto analysisManager = G4AnalysisManager::Instance();
26 //
27 // Create histogram to store energy
28 analysisManager->CreateH1("energy", "Energy", 100, 0, 10 * keV);
29 analysisManager->SetH1Ascii(0, true);
30 analysisManager->OpenFile();
31 }

34 void YourRunAction::EndOfRunAction(const G4Run*) {
35 // Scale histogram and write to file
36 auto analysisManager = G4AnalysisManager::Instance();
37 G4double binWidth = analysisManager->GetH1Width(0);
38 G4double factor = 1. / (analysisManager->GetH1(0)->sum_bin_heights() * binWidth);
39 analysisManager->ScaleH1(0, factor);
40 analysisManager->Write();
41 analysisManager->CloseFile();
42 }

70/87

(optional)
UI commands

71/87

User interface

1. Geant4: a toolkit that provides all components.

2. G4 application: C++ application dedicated to specific simulation.

3. End-user: could control simulation w/o C++ knowledge, via user interface (UI)
commands.

UI commands are also useful for controlling the application w/o rebuilding it.

72/87

UI command syntax

• A UI command (e.g. /run/verbose 1) consists of:
◦ command directory
◦ command
◦ parameter(s)

• A parameter can be a type of string, boolean, integer or double:
◦ space is a delimiter
◦ use double-quotes (“”) for strings

• A parameter can be sometimes omitted. Its default value will be taken in this case:
◦ predefined default value or current value according to its definition
◦ using the default value for the first parameter while setting the second: /directory/command ! second

i.e. the exclamation mark ! can be used as a place holder

73/87

UI command submission

• Geant4 UI commands can be issued in 3 different ways by:
◦ (G)UI interactive command submission
◦ batch mode using a macro file
◦ hard-coded commands in the application (slow):

G4UImanager* UI = G4UImanager::GetUIpointer();
UI->ApplyCommand("/run/verbose 1");

• The availability of the individual commands, the ranges of parameters, the available
candidates on individual command parameter may vary according to the
implementation of your application

• some commands are available only for limited Geant4 application state(s): e.g.
/run/beamOn 100 is available only for Idle states

74/87

Macro file

A macro file is an ASCII file that contains UI commands

• All commands must be given with their full-path directories
• Use # for comment a line

◦ from the first # to the end of the line will be ignored
◦ comment lines will be echoed if /control/verbose is set to 2

• Macro file can be executed
◦ interactively or in other macro files

/control/execute macro_file_name

◦ hard-coded

G4UImanager* UI = G4UImanager::GetUIpointer();
UI->ApplyCommand("/control/execute macro_file_name");

75/87

Primary particles: built-in UI commands

g4Macro.mac

24 # --
25 # Set the primary generator (i.e. the Particle Gun) properties:
26 # ==
27 # set the particle energy to 30 MeV
28 /gun/energy 30 MeV
29 # set the particle type to electron
30 /gun/particle e-

List of built-in commands

76/87

http://geant4-userdoc.web.cern.ch/geant4-userdoc/UsersGuides/ForApplicationDeveloper/html/Control/commands.html

Detector: custom UI commands

experiment/g4Macro Meroli 100MeV electron 5p6um Si.mac

19 # --
20 # Your own UI commands defined by "YourDetectorMessenger" to set some of the
21 # properties (thickness, material) of the target:
22 # ==
23 # set the target thickness to match the experimental one: 5.6 um
24 /yourApp/det/setTargetThickness 5.6 um
25 # set the target material to match the experimental one: Silicon
26 /yourApp/det/setTargetMaterial G4_Si

Documentation of how to define custom commands.

77/87

http://geant4-userdoc.web.cern.ch/geant4-userdoc/UsersGuides/ForApplicationDeveloper/html/Control/userInterfaceCommand.html

Detector UI commands: src/YourDetectorMessenger.cc
11

17 fTargetMaterialCMD(nullptr)

19 //
20 // create the "det" command directory first then add commands
21 fDirCMD = new G4UIdirectory("/yourApp/det/");

23 //
24 // UI command to set the target thickness
25 fTargetThicknessCMD = new

G4UIcmdWithADoubleAndUnit("/yourApp/det/setTargetThickness",this);↪→
26 // set the description of the command
27 fTargetThicknessCMD->SetGuidance("Sets the Thickness of the Target.");
28 // name = TagetSizeX; omittable=false i.e. user needs to supply a value
29 fTargetThicknessCMD->SetParameterName("TagetSizeX",false);
30 // set the aceptable range of the parameter value higher than zero
31 fTargetThicknessCMD->SetRange("TagetSizeX>0.");
32 // set the unit category to be length
33 fTargetThicknessCMD->SetUnitCategory("Length");
34 // can be modified at PreInit and Idle state
35 fTargetThicknessCMD->AvailableForStates(G4State_PreInit, G4State_Idle);
36 // in MT mode: do not need to be broadcasted for workers

43 // fTargetMaterialCMD->SetToBeBroadcasted(false);
53
54 void YourDetectorMessenger::SetNewValue(G4UIcommand* command, G4String newValue)
55 {
56 // set target thickness
57 if (command == fTargetThicknessCMD) {
58 G4double thickness = fTargetThicknessCMD->GetNewDoubleValue(newValue);
59 fYourDetector->SetTargetThickness(thickness);

64 }
78/87

Our application

79/87

Brief description

Mandatory components:

• YourDetectorConstruction:
◦ a simple box (shape) as the detector/target filled with with silicon as material,
◦ placed in a box (shape) “world” volume filled with low density hydrogen gas.

• YourPhysicsList:
◦ we will use one of the pre-defined, ready-to-use physics list provided by the Geant4 toolkit (therefore no

need to write any user physics list class like in our case)

• YourPrimaryGeneratorAction:
◦ a simple particle gun (G4ParticleGun): generates a single primary particle per event with pre-defined

particle type and kinematics pointing toward to our target

• YourActionInitialization:
◦ implement the construction and registration of our YourPrimaryGeneratorAction object

• Main method of the application and execute the simulation
(YourMainApplication.cc)

80/87

Application

Geant4TutorialApplication

experimentdiscussed later

inc

YourActionInitialization.hh

YourDetectorConstruction.hh

YourDetectorMessenger.hh

YourEventAction.hh

YourPrimaryGeneratorAction.hh

YourRunAction.hh

YourSteppingAction.hh

src

YourActionInitialization.cc

YourDetectorConstruction.cc

YourDetectorMessenger.c

YourEventAction.cc

YourPrimaryGeneratorAction.cc

YourRunAction.cc

YourSteppingAction.cc

. . .

Geant4TutorialApplication

. . .

CMakeLists.txt

Readme.txt

g4Macro.mac

vis.mac

yourMainApplication.cc

Macros (here *mac) contain user interface (UI)
commands that allow to change application without
re-building it!

81/87

Geant4TutorialApplication: how to run it?

1. Assuming Geant4 installation was completed, application can be build:

git clone https://gitlab.cern.ch/azaborow/geant4tutorialapplication.git
cd Geant4TutorialApplication/
mkdir build
cd build
cmake ..
make

2. To run application in batch mode (no visualization):

./yourMainApplication ../g4Macro.mac

3. With visualization (Qt):

./yourMainApplication

Then type in the application UI commands:

/run/initialize
/control/execute ../vis.mac
/control/execute ../g4Macro.mac

82/87

Geant4TutorialApplication: visualization

83/87

Experiment: electron beam on thin silicon foil

Experimental data is taken from S. Meroli et al 2011 JINST 6 P06013:

experiment/exp_Meroli_100MeV_electron_5p6um_Si.dat

Energy loss distribution of 100 MeV electrons is measured for 5.6 µm thin silicon foil.

To run Geant4 simulation use macro that sets appropriate detector material, thickness,
particle type, and its energy.

./yourMainApplication ../experiment/g4Macro_Meroli_100MeV_electron_5p6um_Si.mac

This produces two files:

Hist_Edep_h1_energy.csv
Hist_Edep.ascii

Only second file is used, an example simulation output is copied to experiment/

directory.

84/87

https://www.researchgate.net/publication/230949562_Energy_loss_measurement_for_charged_particles_in_very_thin_silicon_layers

Experiment: electron beam on thin silicon foil

Comparison of simulation to experiment:

cd ../experiment
gnuplot gplot.p
xdg-open fig_Meroli_100MeV_electron_5p6um_Si.eps

 0

 500

 1000

 1500

 2000

 2500

 3000

 3500

 4000

 4500

 5000

 0 1 2 3 4 5 6

E
n
er

g
y
 l

o
ss

 d
is

tr
ib

u
ti

o
n
 [

ar
b
.u

n
it

s]

Energy loss [keV]

Exp. (Meroli et al. 2011)
MC (Geant4 11.0)

Distribution of energy lost by E0=100 [MeV] e
-
 in 5.6 [µm]

85/87

Summary

86/87

Summary

We covered most important topics that allow to build a detector simulation using
Geant4 toolkit.

Some topics were not included (due to lack of time):

• Visualization: ESIPAP 2021 lecture, Getting Started with Geant4 course,
documentation.

• Geant4 examples (distributed with the toolkit): ESIPAP 2021 lecture,
documentation.

For any help, anytime, please consult Geant4 documentation and Geant4 forum.

Please contact me on Slack if you have any questions!

87/87

https://indico.cern.ch/event/973041/contributions/4097138/attachments/2181612/3685412/2d_Visualisation.pdf
https://indico.cern.ch/event/865808/contributions/3647803/attachments/1948415/3281633/Visualization.pdf
http://geant4-userdoc.web.cern.ch/geant4-userdoc/UsersGuides/ForApplicationDeveloper/html/Visualization/visualization.html
https://indico.cern.ch/event/973041/contributions/4097163/attachments/2181649/3685467/4b_Examples.pdf
https://geant4-userdoc.web.cern.ch/UsersGuides/ForApplicationDeveloper/html/Examples/examples.html
https://geant4.web.cern.ch/support/getting_started
https://geant4-forum.web.cern.ch/

