Experimental particle. physics

European School of Instrumentation in Particle & Astroparticle Physics

a few words on S/B optimization and data analysis

Interesting processes are rare!

There is no Higgs-boson detector!

this is what we are looking for...

Step I: find events with the right ingredients

Step I: find events with the right ingredients

Step I: find events with the right ingredients

Signal and background

Irreducible background

The final state is exactly the same, but it does not come from the particle you are looking for

The final state looks like the same, but some f the particle fakes what you are looking for

Marco Delmastr

Selections

- Cut on particle properties to reduce reducible background
 - Shower shapes, track properties, ...
- Cut on event properties to distinguish signal from background
 - Particle kinematics, decay kinematics event shape, ...
- Try to keep signal while reducing background!

✓ Increase S/B...

Step 2: reconstruct properties of initial particle

• We have 4 particles...

with their energy (calorimeters), charge and momentum (tracker)

Use pairs of opposite sign e⁺e⁻ and μ⁺μ⁻

• Reconstruct invariant mass from the 4 particles $M=\sqrt{4}$ (

$$I = \sqrt{\left(\sum E_i\right)^2 - \left(\sum \vec{p_i}\right)^2}$$

Hands-on: dimuon invariant mass

- Use real LHC data from the CMS experiment
- Select muon-antimuon pairs
- Compute and plot the di-muon invariant mass

Back to the Higgs search example...

What we (ideally) did:

- Select all events with a di-muon and a di-electron pairs, trying to reduce the contribution from (reducible) backgrounds
- Compute the eeµµ invariant mass and plot it...

m_{2μ2e/2e2μ} [GeV]

$$M = \sqrt{\left(\sum E_i\right)^2 - \left(\sum \vec{p_i}\right)^2}$$

Events in real life do not come with a label! No way to distinguish signal from background on an event-by-event base...

Number of events

- Background gets estimated...
 - \checkmark ... from simulation (normalized to data)
 - directly from data ("control regions", enriched in background events)

How significant is an excess?

- **p0**: probability that the excess is due to a fluctuation of background
 - Significance: $p_0 = 1 - \operatorname{Erf}\left(\frac{Z}{\sqrt{2}}\right)$ $Z \sim \frac{\sim}{\sqrt{R}}$ Convention:
 - 3σ is an evidence (p₀ = 0.27%) •
 - 5σ is a discovery (p₀ = 5.7.10⁻⁷) •

Marco Delmastro

(experimental) LHC physics

How significant is an excess?

Marco Delmastro

(experimental) LHC physics

Significance increases with data (and time!)

Another Higgs search example: $H \rightarrow yy$

A narrow mass peak...

Marco Delmastro

... on a large background!

"Irreducible" background

Signal vs. background

- small branching ratio (~10⁻³)
- huge background
 γγ, γj, jj, Drell-Yan

• S/B ~ 3%

$H \rightarrow \gamma \gamma$ significance

$H \rightarrow \gamma \gamma$ invariant mass resolution

Marco Delmastro

$H \rightarrow \gamma \gamma$ (weighted) mass spectra

Hands-on: $H \rightarrow yy$ significance

- Use "toy" H→yy mass spectra
- Estimate signal significance vs. luminosity (statistics) and invariant mass resolution

