SIGNAL PROCESSING FOR RADIATION DETECTORS

Daniel Dzahini: TIMA laboratory Grenoble Co-founder of Xdigit company=> xdigit.fr Professor in PHELMA (Grenoble)

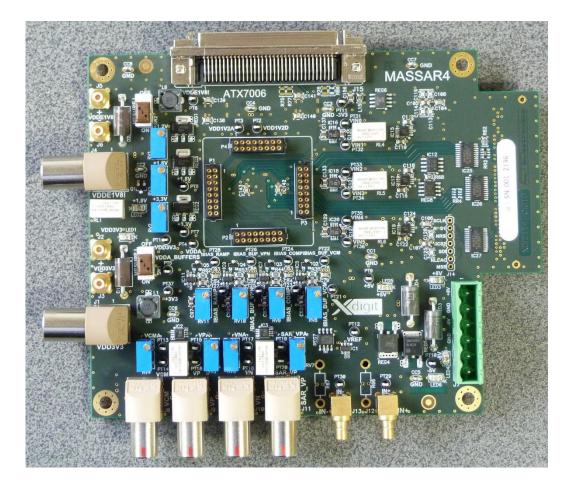
Daniel Dzahini LPSC => TIMA / Xdigit ATLAS / ILC etc..

dzahini@univ-grenoble-alpes.fr

Xdigit is a spin-off on specific ADC design Mainly for array like pixels

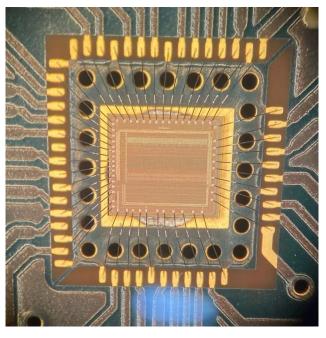
www.xdigit.fr

Example of MASSAR 4 chip designed by Xdigit



Mother board

Daughter board

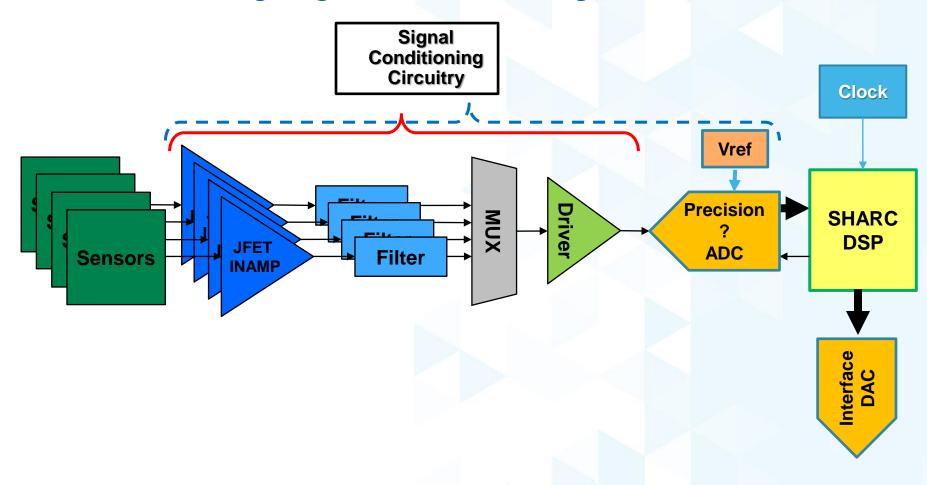


Chip on board 128 channels of 14 bits ADC @ 150KS/s

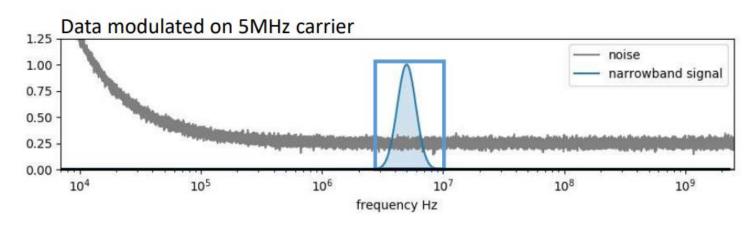
THANKS to many who provide slides or other documents online that I used for this lecture

- Angelo Rivetti: Front end electronics for radiation sensors (book)
- De Geremino Gianluigi (BNL)
- Emilio Gatti & Manfredi (INFN)
- Yan Kaplon (CERN)
- Christophe de la Taille (Omega lab)
- Helmuth Spieler (Lawrence Berkeley National Laboratory)
- Glenn F. Knoll: Radiation detection & measurement (book)
- Chiara Guazzoni; http://home.dei.polimi.it/guazzoni
- Paul O'Connor (Brookhaven National Lab Upton, NY USA)

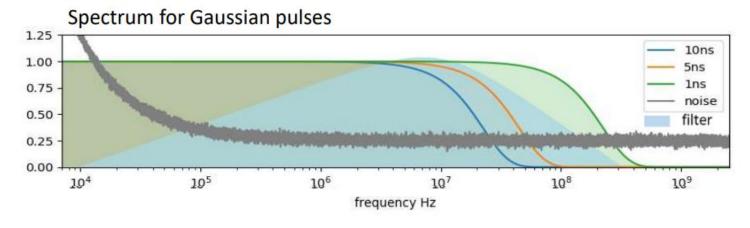
Industrial Analog Signal Chain -> Digital



Noise filtering (frequency domain)



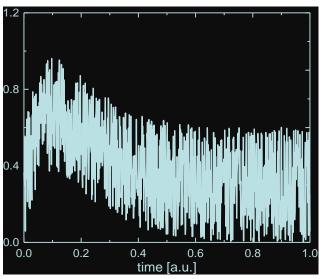
Communications, radar, etc: signal energy is concentrated in narrow band of frequencies



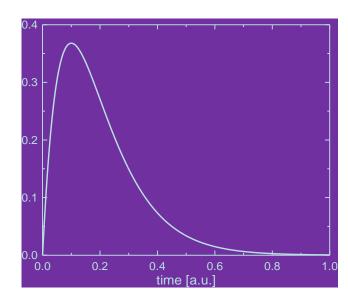
Radiation detection: signal is delta-like in time domain, has energy over a broad range of frequencies

What pulse signal processing means?

Sculpturing!
Designing?



signal processing

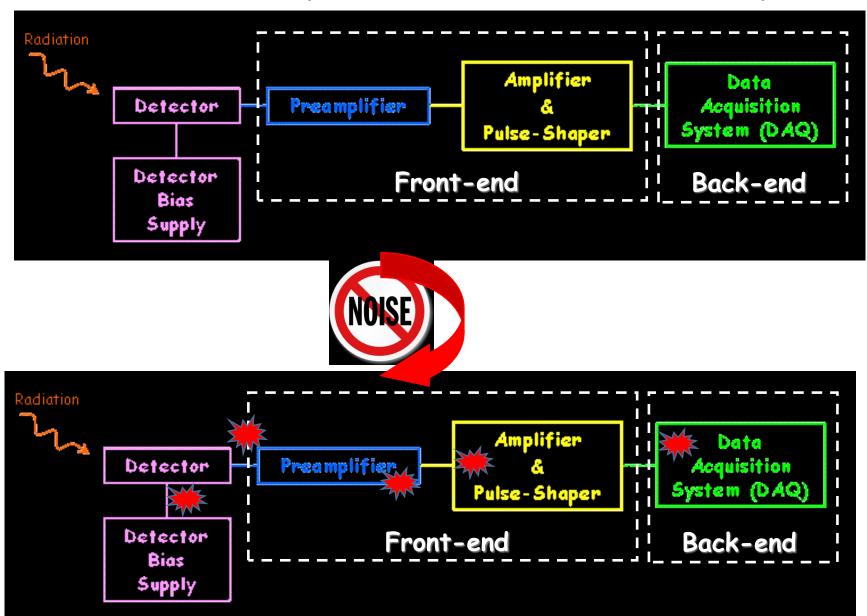


How noisy are flowers growing in your garden

If plants can grow without ?? noise,

Why can't I amplify a signal without adding noise?

Actual Read-out system is unfortunately noisy



Many different types of detectors are used for radiations detection.

Almost all rely on electronics readout.

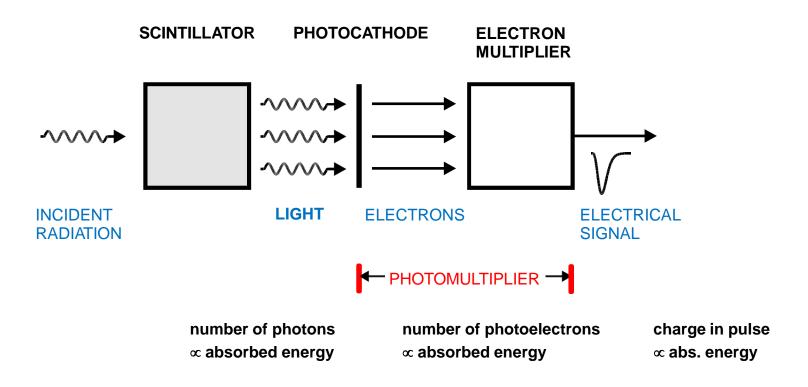
Although detectors appear to be very different, basic principles of the readout apply to all.

- The sensor signal is a series of **current** pulses.
- The integrated current $Q_S = \int i_S(t)dt$ yields the signal **charge**.
- The total charge is proportional to the absorbed **energy**.

Readout systems include usually the following functions:

- Signal acquisition (amplification)
- Pulse shaping
- Digitization
- Data Readout

Example: Scintillation Detector



Signal Processing and Electronics 2013 ENTERVISION Course: Detectors and Electronics, Valencia, Spain – 10-11 Sep. 2013

ATLAS: signal creation in the Calorimeter

Lead plates in Liquid Argon

Dynamic range :

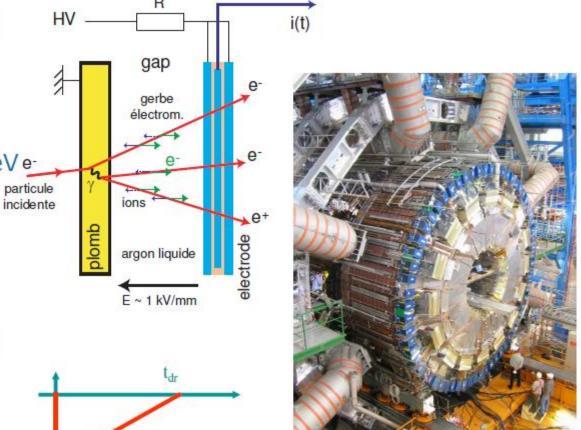
▶ 16 bits 50 MeV-3 TeVe-

Energy resolution :

▶ 10%/√E

Triangular ionisation signal

- ▶ I0 = 2.5 µA/GeV
- ▶ tdr= 450 ns



Classification of detector systems

Detector system is:

A *collection of sensor elements* designed to be sensitive to either:

Discrete events: arrival of short bursts of energy (may or may not be single quanta) tracker, calorimeter, PET, XRF, LIDAR

Continuous or slowly-varying flux of energy

dosimeter, camera

Wave properties of the incident EM field (frequency, phase, polarization) treated classically

UHECR, Dark Ages cosmology, axion search

Readout electronics

This lecture

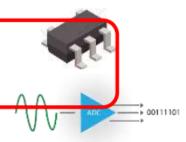
Amplification, filtering

Sampling, peak detection

Discrimination

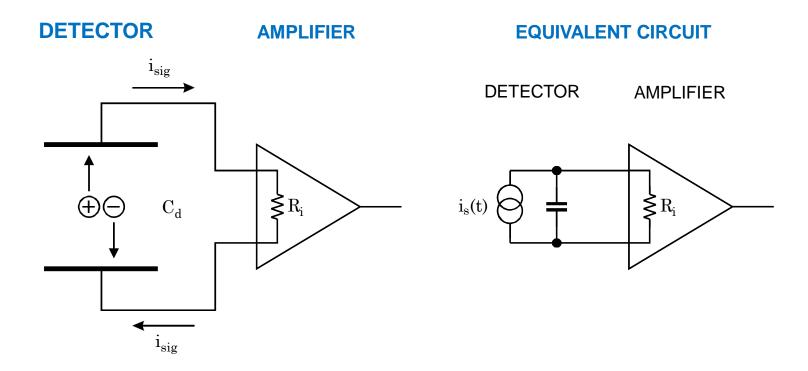
Amplitude- or time-to-digital conversion

Power conditioning



<u>Digital processing</u> to correct sensor + electronics nonidealities and extract features of interest

SIGNAL FORMATION

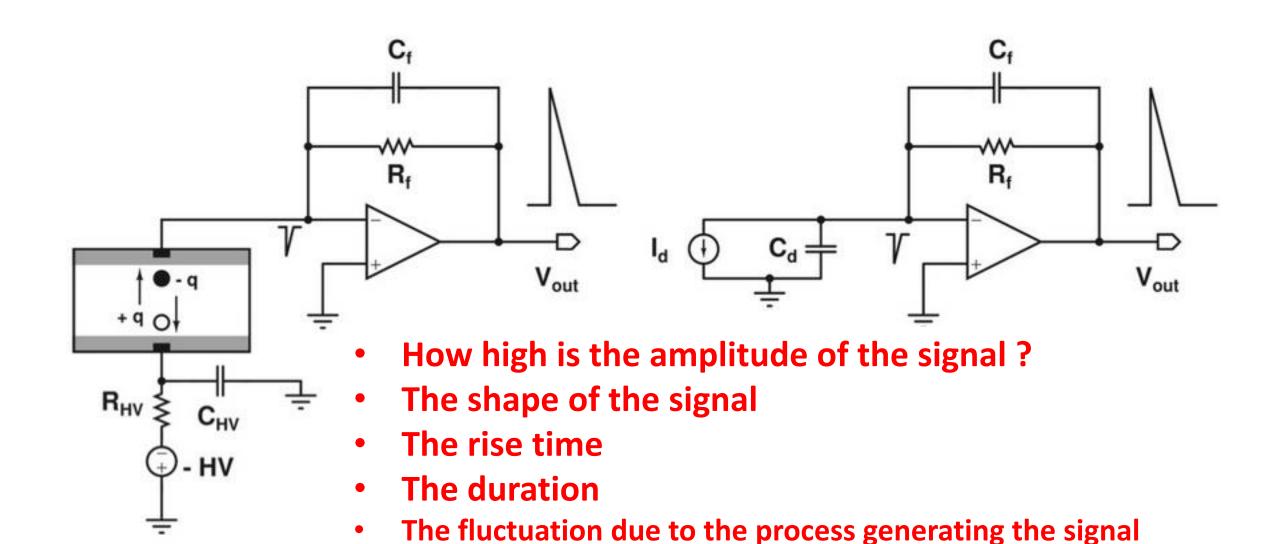


Detector signal duration: how short?

- Generally a detector signal is a short current pulse:
 - thin silicon detector (10 –300 μm): 100 ps–30 ns
 - thick (~cm) Si or Ge detector: 1 –10 μs
 - proportional chamber: 10 ns –10 μs
 - Microstrip Gas Chamber: 10 -50 ns
 - Scintillator+ PMT/APD: 100 ps-10 μs

$$Energy \sim \int i(t) dt$$

Signal polarity with negative High voltage

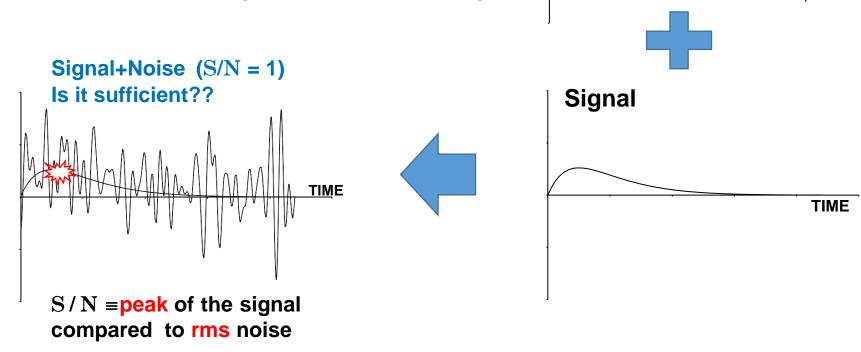


Electronic Noise from the Read out Chain

Choose a time when no signal is present.

Amplifier's quiescent output level (baseline):

In the presence of a signal, noise mix with signal

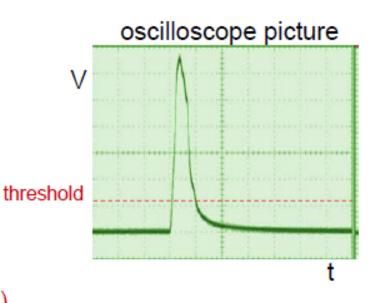


TIME

What Information can one extract from a pulse?

Various measurements of this signal are possible Depending on information required:

- Signal above threshold digital response / event count
- Integral of current = charge
 - → energy deposited
- Time of leading edge
 - → time of arrival (ToA) or time of flight (ToF)
- Time of signal above threshold
 - → energy deposited by TOT



and many more ...

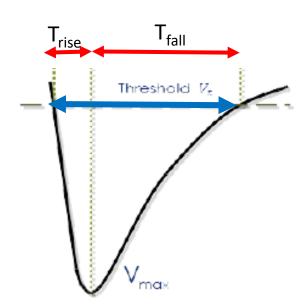
Counting and time over threshold

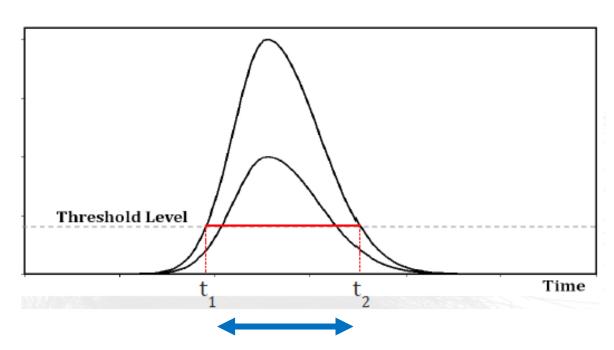
For **digital imaging** a counter is used after the comparator Then one proceed by counting the number of events in a frame rate.

The comparator system could be used also to quatify the amplitude of an incoming signal.

The time spent over threshold by the amplifier output is somehow proportional to the amplitude

of the incoming signal: TOT





Parameter impacting the pulse amplitude:

Ei = Minimum ionization energy (depends on the detector cristal, gaz, or liquide)

Ep (> Ei): average energy to generate a charges pair

E: Energy lost by an incoming particle =>

Np: Average Number of generated pairs

Np = E/Ep => an average number

But instantly, the number follows a probabilistic law with a fluctuation from one event to another displaying a <u>standard</u>

<u>deviation</u> $\sigma_{Np} = \sqrt{F * Np}$; F is the Fano factor

In many material F<1 then σ_{Np} is better than one could expect from the Poisson statistics (\sqrt{Np});

Detector's equivalent circuit: C_D an I_{L (leakage)}

Detector = capacitance Cd

– Pixels : 0.1-10 pF

– PMs: 3-30 pF

Ionization chambers: 10-1000 pF

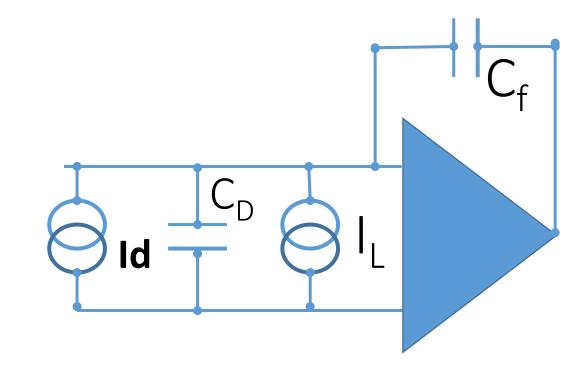
Sometimes effect of transmission line

Signal: current source

Pixels : ~100 e⁻/µm

PMs: 1 photoelectron -> 10⁵-10⁷ e⁻¹

- Modeled as an impulse (Dirac) : $i(t)=Q_0\delta(t)$



- \bullet C_D : Impacts on speed and noise figures
- | impacts on output DC level, and on noise

Charge sensitive preamplifier: open loop gain

Active Integrator ("charge-sensitive amplifier")

Start with inverting voltage amplifier

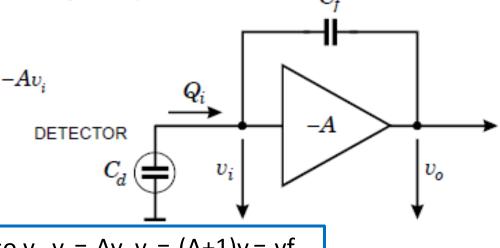
Voltage gain $dv_a/dv_i = -A \implies v_o = -Av_i$

Input impedance = ∞ (no signal current flows into amplifier input)

Connect feedback capacitor C_f between output and input.

Voltage difference across C_f :

Charge deposited on C_f :



so
$$v_0 - v_i = -Av_i - v_i = -(A+1)v_i = -vf$$

$$v_f = (A+1)v_i$$

$$Q_f = C_f v_f = C_f (A+1) v_i$$

$$Q_i = Q_f$$
 (since $Z_i = \infty$)

$$\Rightarrow$$
 Effective input capacitance C_i

$$C_i = \frac{Q_i}{Q_i} = C_f(A+1)$$

 $C_i = \frac{Q_i}{v_i} = C_f(A+1)$ ("dynamic" input capacitance)

$$A_{Q} = \frac{dV_{o}}{dQ_{i}} = \frac{A \cdot v_{i}}{C_{i} \cdot v_{i}} = \frac{A}{C_{i}} = \frac{A}{A+1} \cdot \frac{1}{C_{f}} \approx \frac{1}{C_{f}} \quad (A >> 1)$$

Set by a well-controlled quantity, the feedback capacitance.

Charge preamplifier: open loop gain and CD typical values

So finally the fraction of charge signal measured by the amplifier is:

$$\frac{Q_i}{Q_s} = \frac{C_i v_i}{v_i (C_i + C_{\text{det}})} = \frac{1}{1 + C_{\text{det}} / C_i}$$
Must be high enough

It is like a capacitive divider:

Signal over Cdet, then shared with a virtual input capacitor Ci= Cf*(A+1)

If Ci is big then only limited charges

Example:
$$A = 10^{3}$$

$$C_{f} = 1pF$$

$$C_{i} = 1nr$$

$$C_{i} = 1nr$$

$$C_{i} = 1nr$$

Must be high enough If Ci is big then only limited charges

remain on
$$C_{det}$$

So if we consider
$$C_{det} = 10pF$$

$$Q_{i}/Q_{s} = 0.99$$

$$(C_i >> C_{det})$$

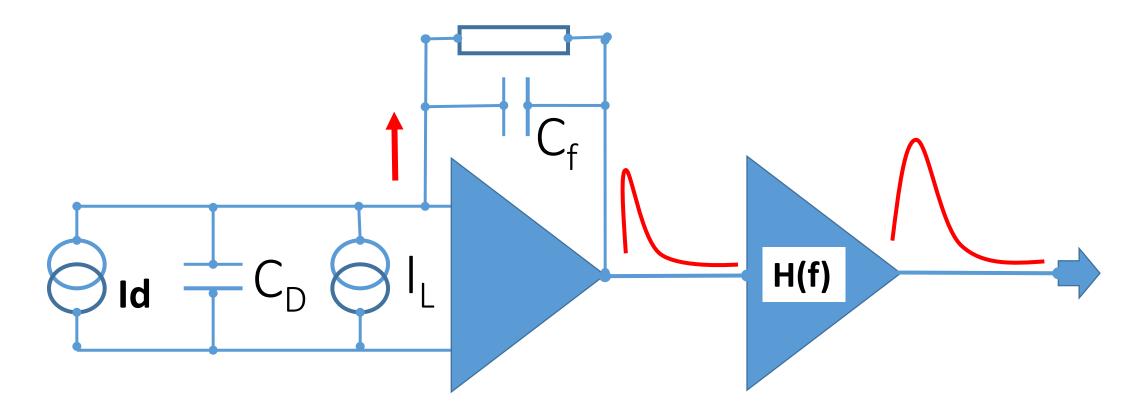
So if we consider
$$C_{det} = 10pF$$
 \Rightarrow $Q_i/Q_s = 0.99$ $(C_i >> C_{det})$
But if we consider $C_{det} = 500pF$ \Rightarrow $Q_i/Q_s = 0.67$ $(C_i \sim C_{det})$

$$Q_{i}/Q_{s} = 0.67$$

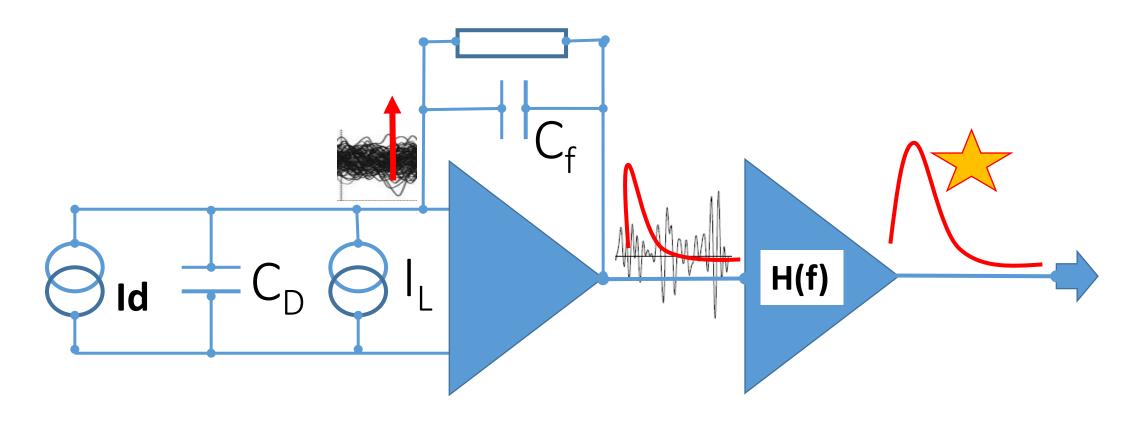
$$(C_i \sim C_{det})$$

Si det: 50um thick, 500mm² area

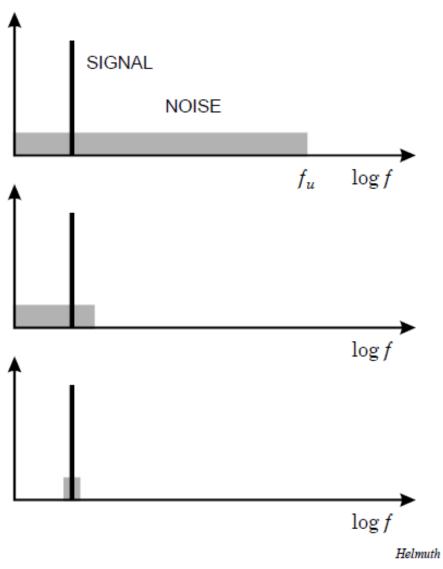
Front end amplifier and shaper circuit



Noise and Front end amplifiers



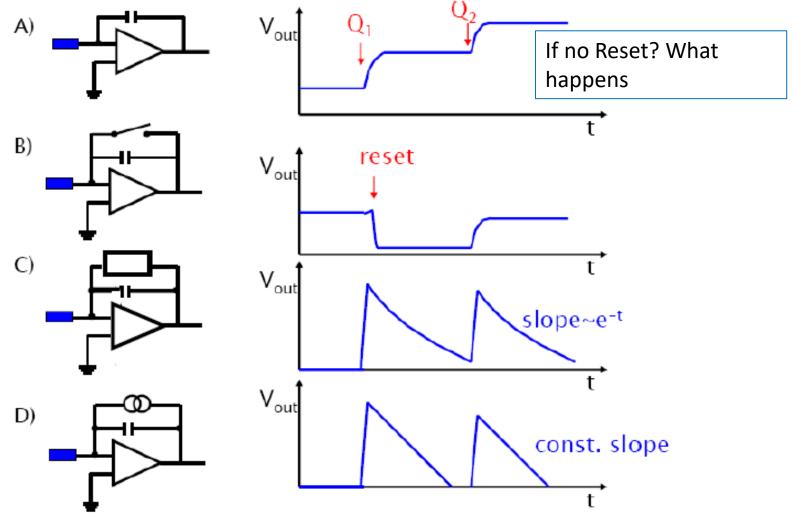
Signal/Noise optimization with bandwidth



The total noise will be the integral over the bandwidth Then Signal/Noise could be improved by « optimizing » the noise bande close to the signal's.

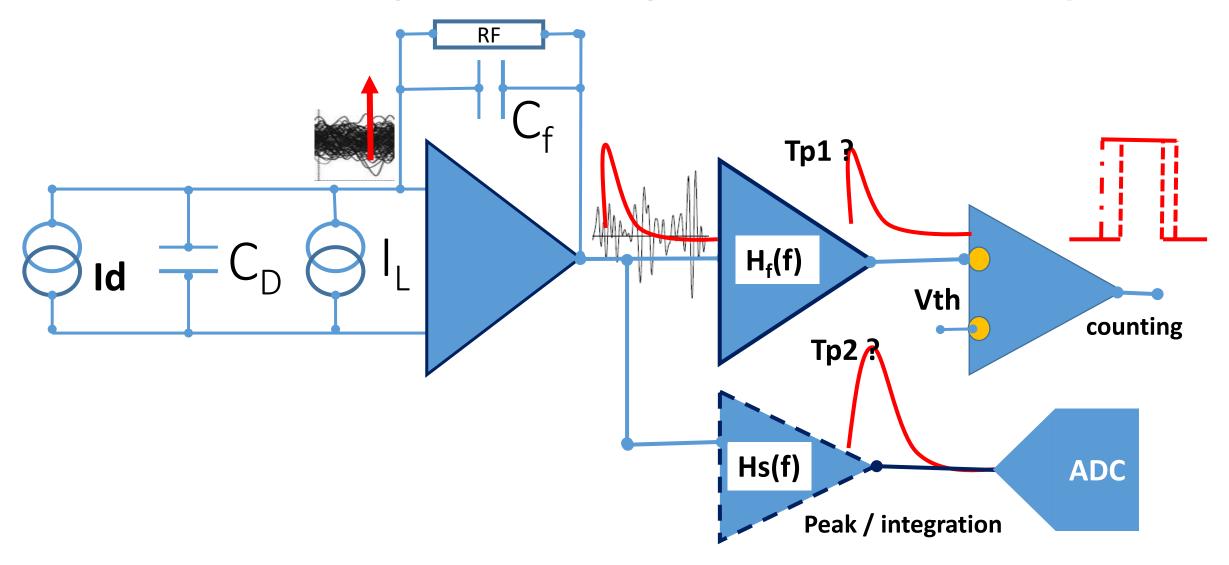
Helmuth Spieler

Different options of reset systems

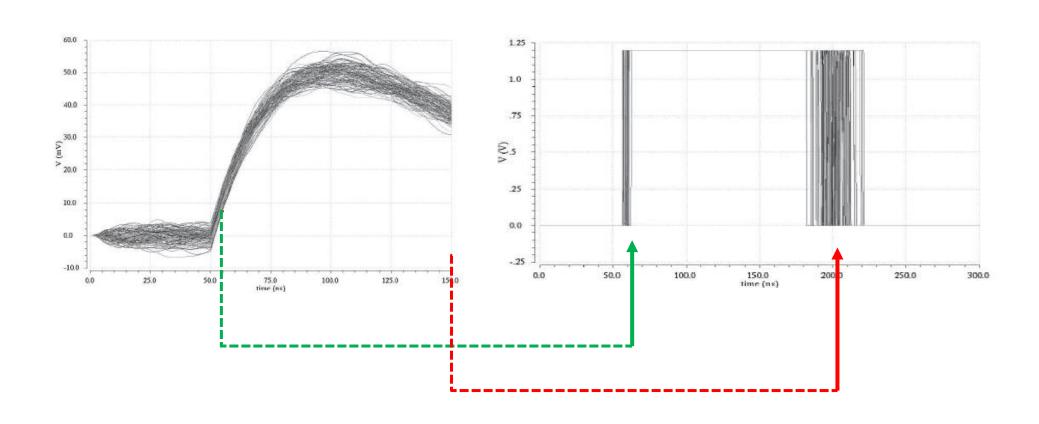


Ref LBL + de La Taille

Noise in integration stage versus counting



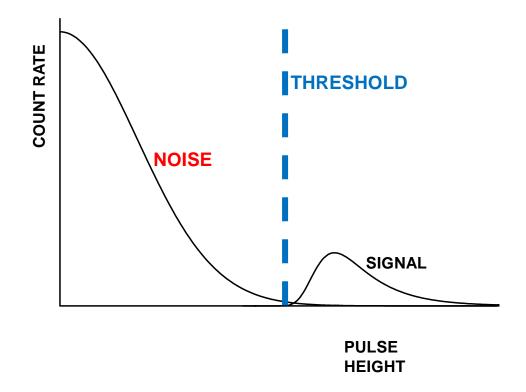
Even for counting, beware of the noise: why using a shorter peaking time for counting readout?



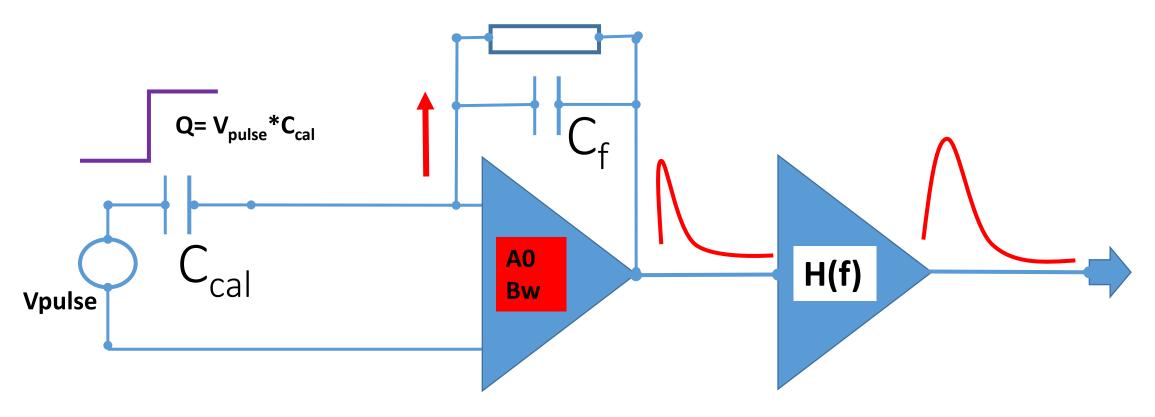
How setting the threshold of a comparator for counting purpose?

It must be set:

- 1. High enough to reduce noisy hits
- 2. Low enough to capture the minimum signal

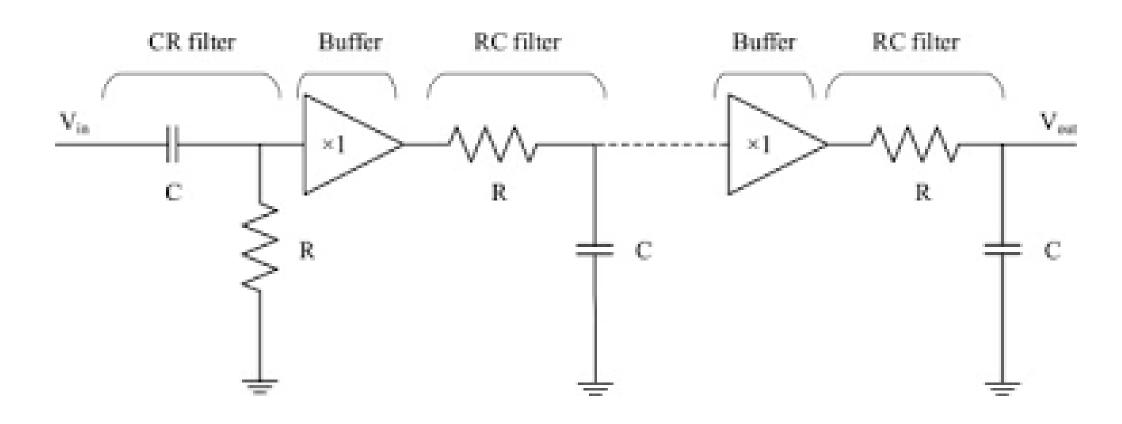


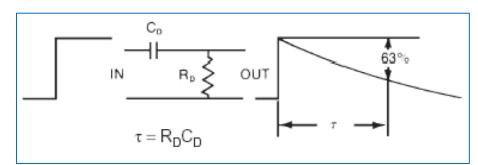
Calibration and simulation of Front end amplifiers



Before been so happy that you find a noise very low!!, make sure your circuit is still amplifying the signal

CR*RC_n shapers (filters overview)





CR stage after the preamp

$$V_{in}(t) = \frac{Q(t)}{C} + V_{out}(t) \implies \frac{dV_{in}(t)}{dt} = \frac{i(t)}{C} + \frac{dV_{out}(t)}{dt}$$

by
$$V_{out}(t) = i(t)R$$
 and $\tau = RC$, $\tau \frac{dV_{in}(t)}{dt} = V_{out}(t) + \tau \frac{dV_{out}(t)}{dt}$

Assuming the zero initial condition, taking Laplace transform leads to

$$V_{out}(s) = \frac{\tau s}{1 + \tau s} V_{in}(s) = G_{CR}(s) V_{in}(s)$$

For the step function input

$$V_{in}(t) = \frac{V_0 \quad (t > 0)}{0 \quad (t \le 0)}$$

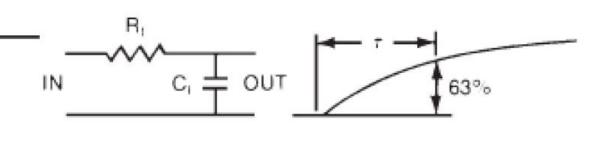
$$V_{in}(s) = L[V_{in}(t)] = \frac{V_0}{s}$$

the output signal becomes

$$V_{out}(s) = \frac{\tau}{1 + \sigma s} V_0 \implies V_{out}(t) = V_0 e^{-t/t}$$

the output signal becomes
$$V_{out}(s) = \frac{\tau}{1 + \tau s} V_0 \implies V_{out}(t) = V_0 e^{-t/\tau}$$

$$G_{CR}(i\omega) = \frac{i\omega\tau}{1 + i\omega\tau} \implies |G_{CR}(i\omega)| = \frac{\omega\tau}{\sqrt{1 + \omega^2\tau^2}}$$



RC stage of the shaper

$$\tau = R_1C_1$$

$$V_{in}(t) = i(t)R + V_{out}(t)$$
 and $i(t) = \frac{dQ(t)}{dt} = C\frac{dV_{out}(t)}{dt}$

Output signal for the step function input:

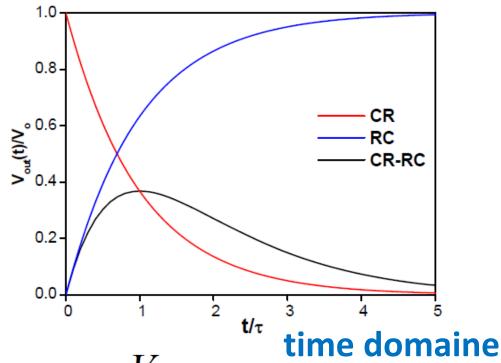
$$V_{out}(s) = \frac{1}{1+\tau s} \frac{V_0}{s} \implies V_{out}(t) = V_0(1-e^{-t/\tau})$$

Frequency domain transfer function:

$$G_{RC}(i\omega) = \frac{1}{1 + i\omega\tau} \Rightarrow |G_{RC}(i\omega)| = \frac{1}{\sqrt{1 + \omega^2 \tau^2}}$$

CR+RC transfert functions for a step input

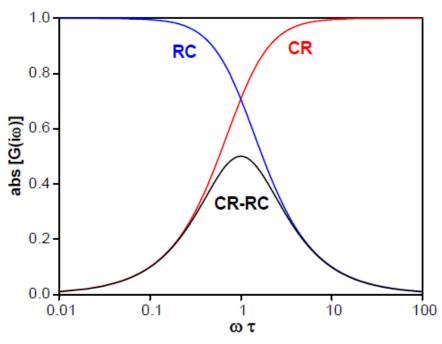
This step stand for the integrator output signal



$$V_{out}(t) = \frac{V_0 \tau_1}{\tau_1 - \tau_2} (e^{-t/\tau_1} - e^{-t/\tau_2})$$
if $\tau_1 = \tau_2$

$$V_{out}(t) = \frac{V_0 \tau_1}{\tau_1 - \tau_2} t e^{-t/\tau_2}$$

if
$$\tau_1 = \tau_2$$
 $\longrightarrow V_{out}(t) = \frac{v_0}{\tau} t e^{-t/\tau}$



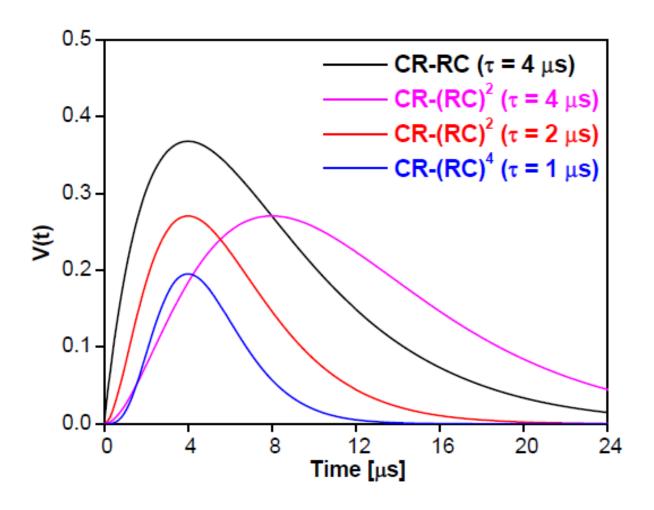
Frequency domaine:

Pass high * pass low

$$G_{CR-RC}(s) = \frac{1}{(1+\tau_2 s)} \frac{\tau_1 s}{(1+\tau_1 s)}$$

Filter / Shaper first order? second? Why?

CR*RCⁿ filters or Semi-Gaussian pulse shaping

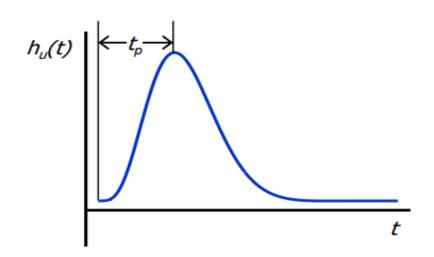


If a single CR high-pass filter is followed by several stages of RC integration, the output pulse shape becomes close to Gaussian amplifiers shaping, in this way are called **semi-Gaussian shaper**. Its output pulse is given by:

$$V_{out}(t) \propto (\frac{t}{\tau})^n e^{-t/\tau}$$

The peaking time in this case is equal to $n^*\tau$.

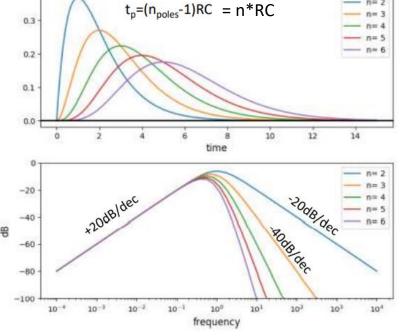
CR*RCⁿ filters impulse response (summary)



impulse response: $h_u(t) = \frac{1}{n!} \left(\frac{t}{\tau}\right)^n e^{-t/\tau}$

peaking time: $t_p = n\tau$

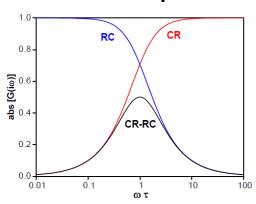
CR + n times RC low pass



transfer function:

$$H_u(s) = \frac{s\tau}{(1+s\tau)^{n+1}}$$

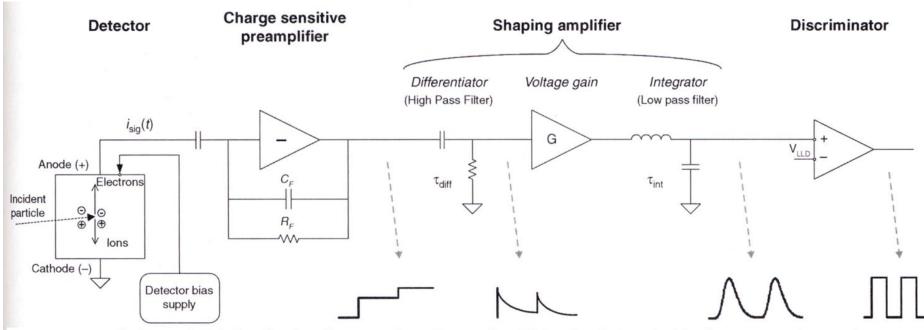
CR+RC low pass



• CR=> 1 zero + 1 pole

n*RC => n poles
 So (n+1) poles in total

Signal shape following read out steps when 2 successive pulses (II)



Schematic of simple signal processing electronics. This circuit is suitable for use, as shown, in many applications and is conceptually similar to more complex circuits. These elements are discussed in greater detail in Chapter 17. (Courtesy of R. Redus, Amptek, Inc.)

Courtesy, Glenn F. « radiation detection »

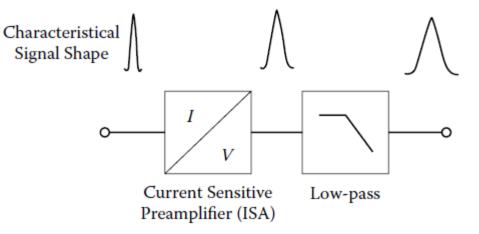
Simplified Signal shape throughout electronic readout

Characteristical Signal Shape

Q
V
Charge Sensitive High-pass Low-pass Preamplifier (CSA)

Charge sensitive Signal conditioning

Current sensitive Signal conditioning



Up til now we describe more the signal's amplitude and it's shaping

LET'S CONSIDER NOW THE NOISE ISSUE

- FIRST: FOR AN AMPLIFIER IN GENERAL
- SECOND: PULSE PREAMPLIFIERS

WHAT IS NOISE?

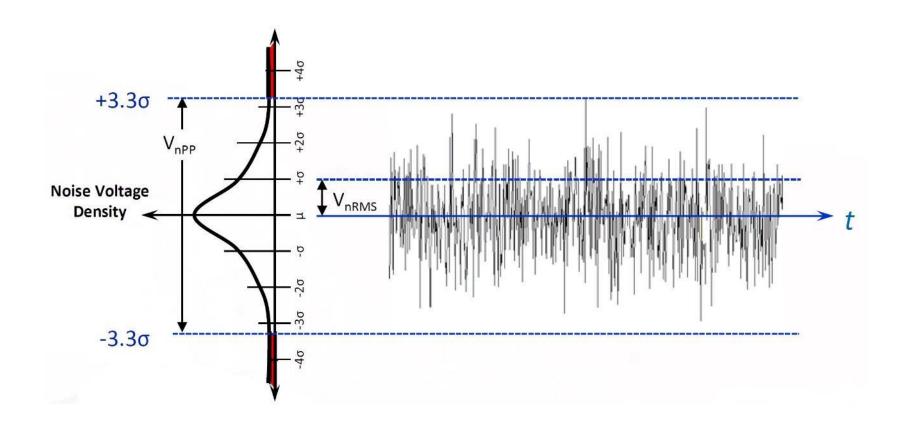
What is noise?

- Noise is any undesired signal that masks the signal of interest.
 - Unwanted disturbance that interferes with a desired signal
 - External: power supply & substrate coupling, crosstalk, EMI, etc.
 - Internal: random fluctuations that result from the physics of the devices or materials
 - Smallest detectable signal, signal-to-noise ratio (SNR), and dynamic range are determined by noise

$$SNR = \frac{P_{signal}}{P_{noise}} = \frac{V_{rms, signal}^2}{V_{rms, noise}^2}$$

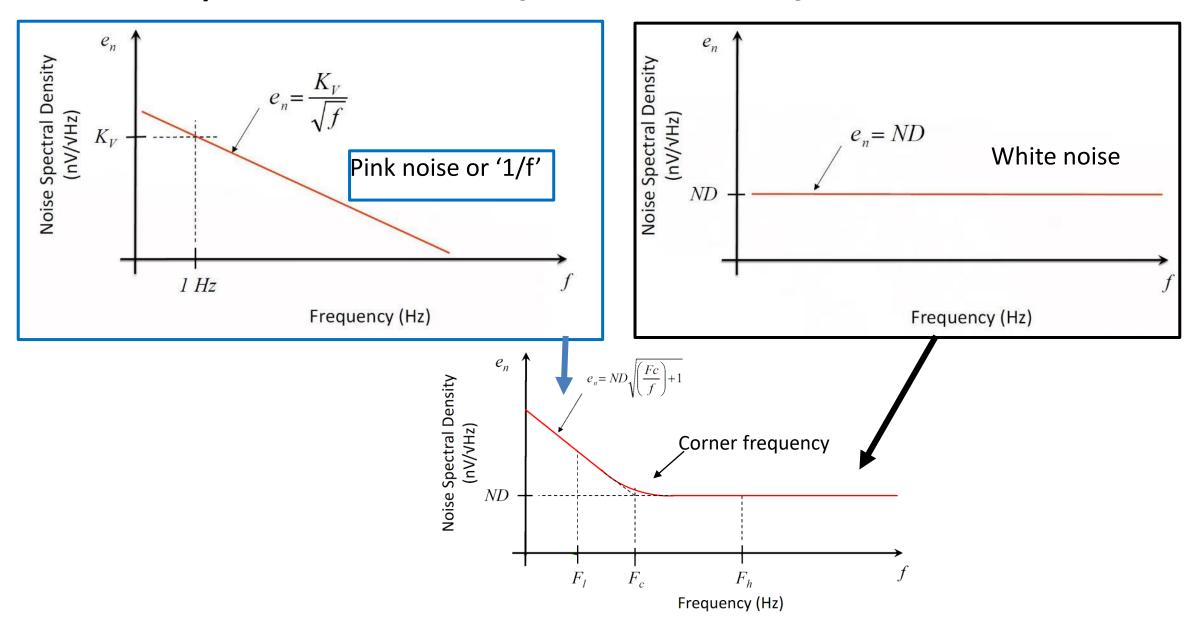
We will look at internal noise sources and how they affect key performance metrics.

How a noise is quantified: amplitude versus time

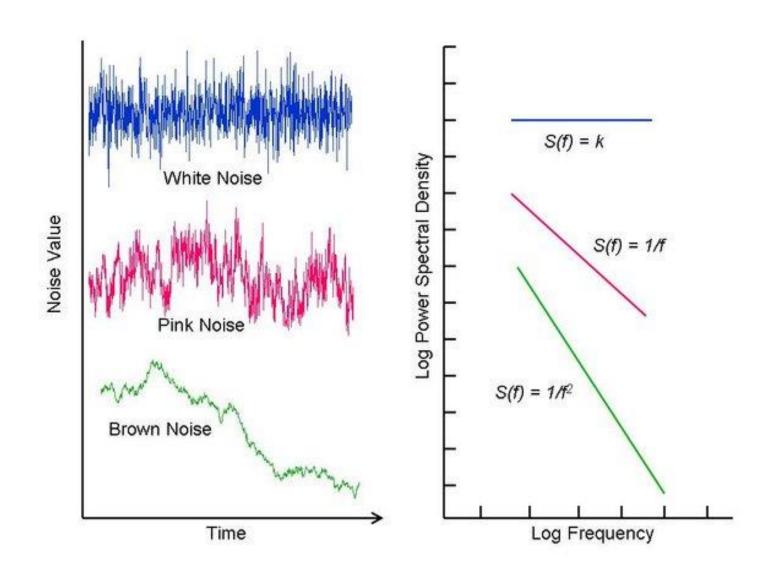


 $Vn_{pp} = 6.6 \times Vn_{RMS}$ Root Mean Square (RMS) Peak-to-Peak (PP)

Noise specifications: spectral density(frequency domain)

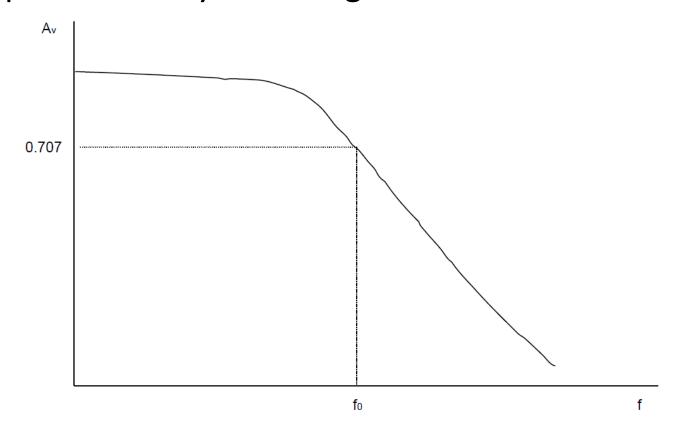


Noise in general: time & frequency domain



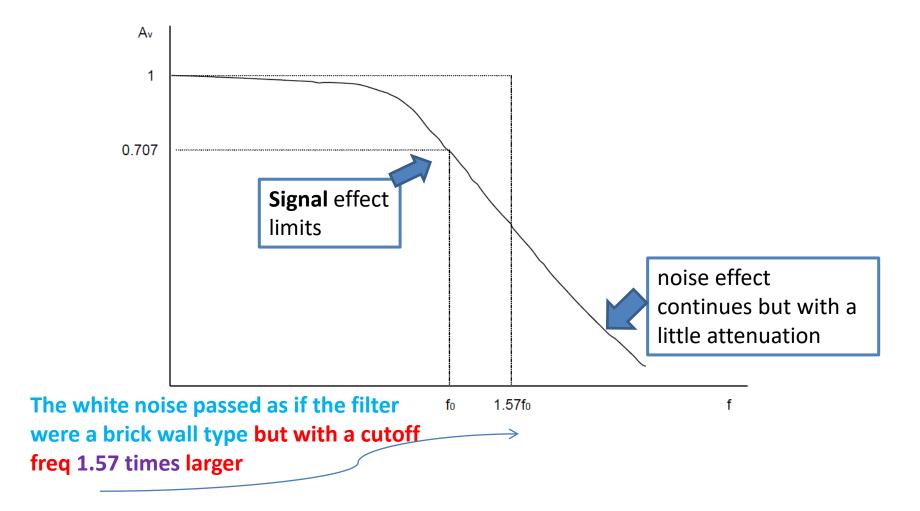
Noise Effective BW (NEB) of an amplifier (filter)

Lets consider a general *low pass* amplification (filter) system; What happen to a white noise located at the input of such amplifier? Is it amplified exactly as the signal?

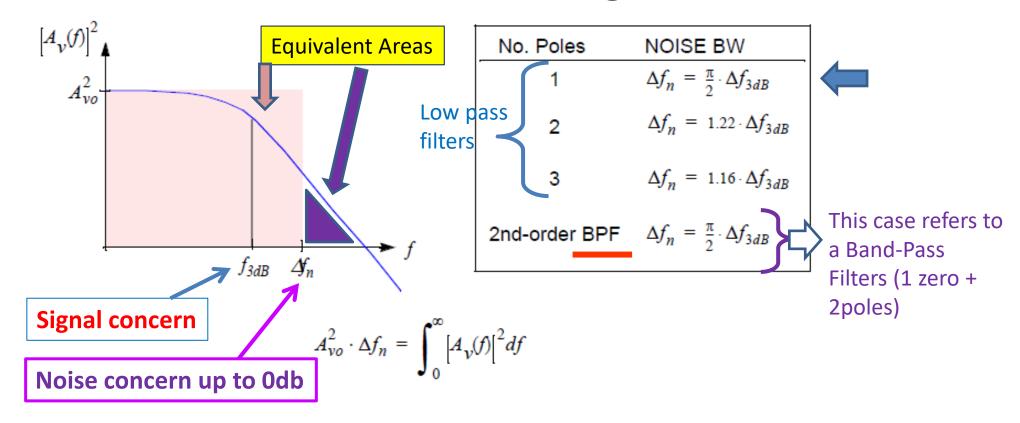


Noise bandwidth

Lets consider a low pass amplification system; What is the effect of a <u>larger bandwidth white noise</u> located at the input of such amplifier?



Equivalent Noise Bandwidth # signal bandwidth



- Noise bandwidth is defined for a brickwall transfer function
- Noise bandwidth is not the same as 3dB bandwidth

Noise Bandwidth improves when number of poles increase Keep it in mind and make the link later with CR*RC_n filtering

Optimizing Filtering <=> Optimize NEB

For Maximally flat (Butterworth) where f₀=f_{3dB}

$$NEB = (\int_{0}^{\infty} \frac{df}{1 + (f/f_0)^{2n}})$$

But higher order n means: More complicated and/or more power budget

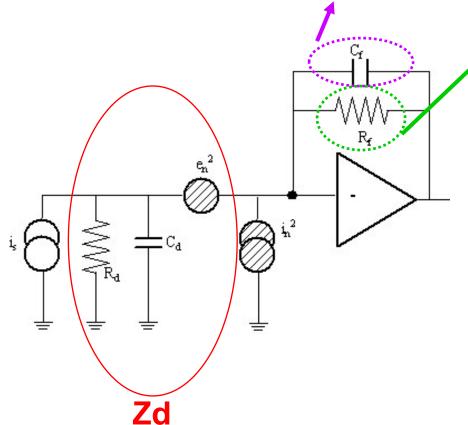
n	NEB	
1	1.57f ₀	
2	1.11f ₀	
3	1.05f ₀	
4	1.025f ₀	

In spectroscopie, one considers often **n=2** as a compromise

High order filter is good(0.5dB improvement)

Charge / Current preamplifiers

Preamplifier: charges / Current output noise



Noise spectrum at the output

$$Sv(\omega) = (in^2 + en^2/|Zd|^2) / \omega^2Cf^2$$

=
$$in^2/\omega^2C_f^2$$
 + $en^2C_d^2/Cf^2$

If we neglect Rd and we translate en to a current By doing en/Zd

Noise issues for charge preamp: frequency domaine

- 2 noise generators at the input
 - Parallel noise : (i_n²) (leakage currents)
 - Series noise : (e_n²) (preamp)
- Output noise spectral density :

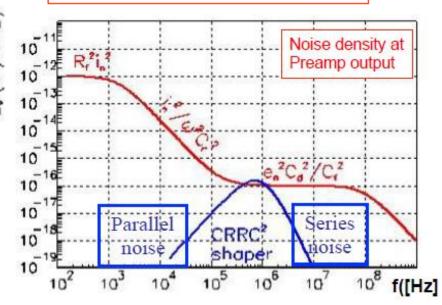
$$- S_v(\omega) = (i_n^2 + e_n^2/|Z_d|^2) / \omega^2 C_f^2$$

= $i_n^2 / \omega^2 C_f^2 + e_n^2 C_d^2 / C_f^2$

- Parallel noise in 1/ω²
- Series noise is flat, with a « noise gain » of C_d/C_f
- rms noise V_n
 - V_n^2 = $\int Sv(ω) dω/2π$ -> ∞ (!)
 - Benefit of shaping...



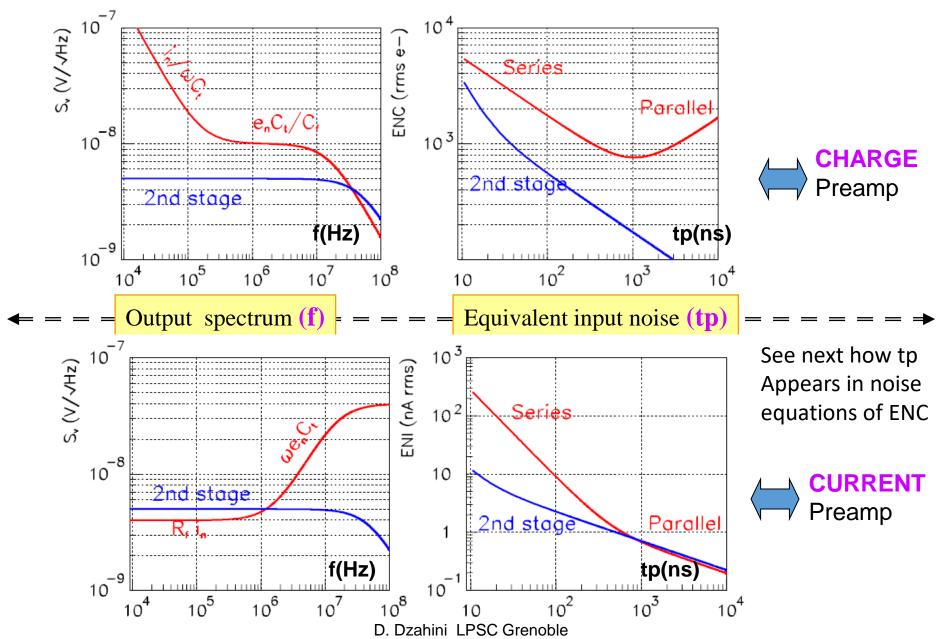
Noise generators in charge preamp



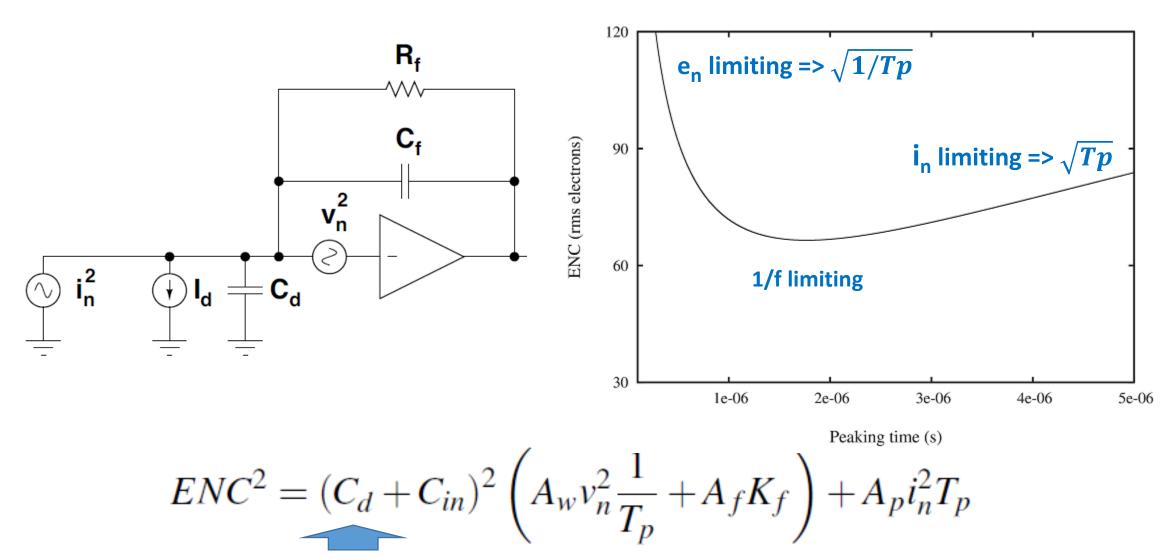
The methode here is to Transfert each input To current domain, then Multiply by the feedback

Ref. C. de la Taille

Output spectrum and it's equivalent input

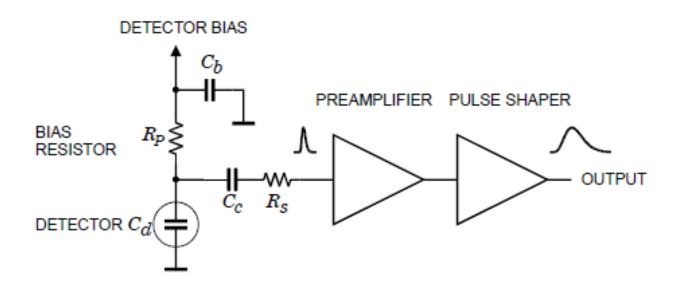


Noise issues in charge preamp: time domaine



Increase with Cd

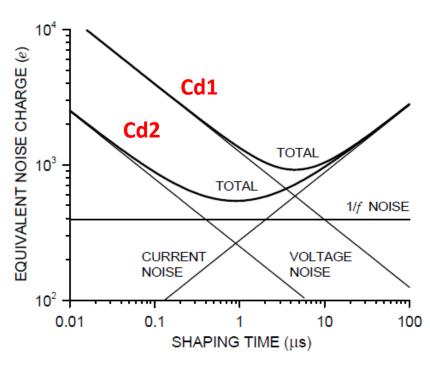
Practical summary about noise in charge integrator



ENC using a simple CR-RC shaper with peaking time T:

$$Q_{\rm n}^2 \approx \begin{bmatrix} \left(2q_eI_d + \frac{4kT}{R_p} + i_{\rm na}^2\right) \cdot T & + & \left(4kTR_{\rm S} + e_{\rm na}^2\right) \cdot \frac{C_d^2}{T} & + & 4A_fC_d^2 \end{bmatrix}$$

$$\uparrow \qquad \qquad \uparrow \qquad \qquad \uparrow$$
 current noise voltage noise 1/f noise
$$\propto \tau \qquad \qquad \propto 1/T \qquad \text{independent of } T$$
 independent of C_d
$$\propto C_d^2 \qquad \qquad \propto C_d^2$$



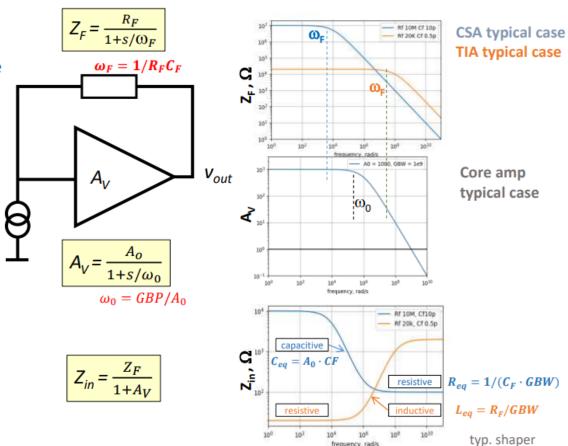
Preamp non idealities: GBW limitations

General case: feedback impedance is combination of resistor and capacitor

"Real" amplifier = ideal voltage amplifier with finite gain-bandwidth product

Feedback *lowers input impedance* to minimize voltage swing on input node:

- Improve linearity and speed
- Avoid destabilizing sensor
- · Mitigate crosstalk in multi-electrode systems

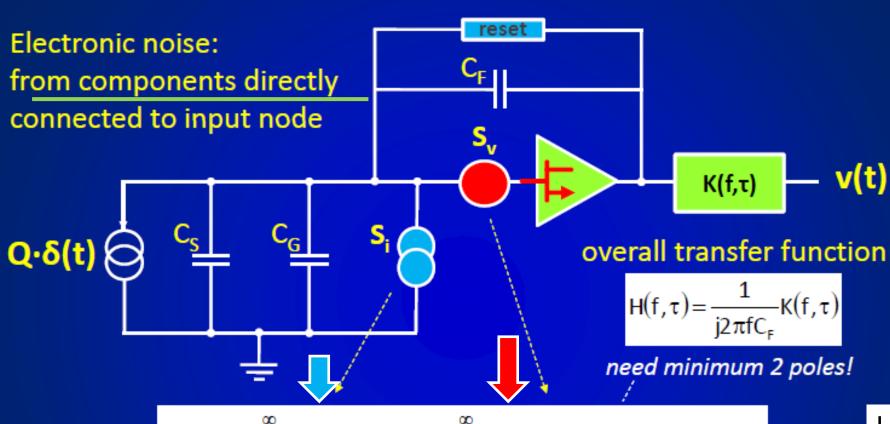


passband

Paul O'connor (BNL)

One stage preamplifier scheme

• The main contributor to the total noise is the **preamp input transistor**. We consider next the contribution of this transistor to the equivalent noise $\mathbf{e_n}$ and $\mathbf{i_n}$

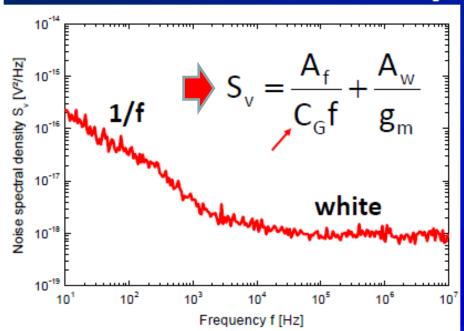


$$\begin{split} & \int\limits_{0}^{\infty} S_{i} \big| H(f,\tau) \big|^{2} df + \int\limits_{0}^{\infty} S_{v} \omega^{2} \big(C_{s} + C_{g} \big)^{2} \big| H(f) \big|^{2} df \\ & = \frac{1}{2} \frac{1}{2} \left| H(f,\tau) \right|^{2} \left| H(f,\tau) \right|^{2} \left| H(f,\tau) \right|^{2} df \end{split}$$

Here, time appears in equations

De Geromino

Noise from Input Transistor



C_G intrinsic gate capacitance proportional to the gate size

$$C_G = C_S$$
 (capacitive matching)

From input transistor:
$$ENC_v^2 = a_f A_f \frac{(C_S + C_G)^2}{C_G} + \frac{a_w}{\tau} \frac{A_w}{g_m/C_G} \frac{(C_S + C_G)^2}{C_G}$$

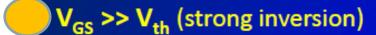
ASIC: power constraints

f_{Tma}f_{(T}(max current)

Input Transistor in CMOS

From transistor's white noise:

$$ENC_{vw}^{2} \approx \frac{a_{w}}{\tau} \frac{A_{w}}{g_{m}(I_{D})/C_{G}} \frac{(C_{s} + C_{G})^{2}}{C_{G}}$$
Fix power = fix drain current I_{D}
 \Rightarrow size (W,L) ?



$$g_{m}\!\left(I_{D}\right)\!\approx\sqrt{\frac{2\mu c_{ox}}{n}\frac{W}{L}I_{D}}\propto\sqrt{\frac{C_{G}I_{D}}{L^{2}}}$$

$$\text{ENC}_{vw}^2 \propto \frac{L}{\sqrt{I_D}} \frac{\left(C_S + C_G\right)^2}{\sqrt{C_G}}$$

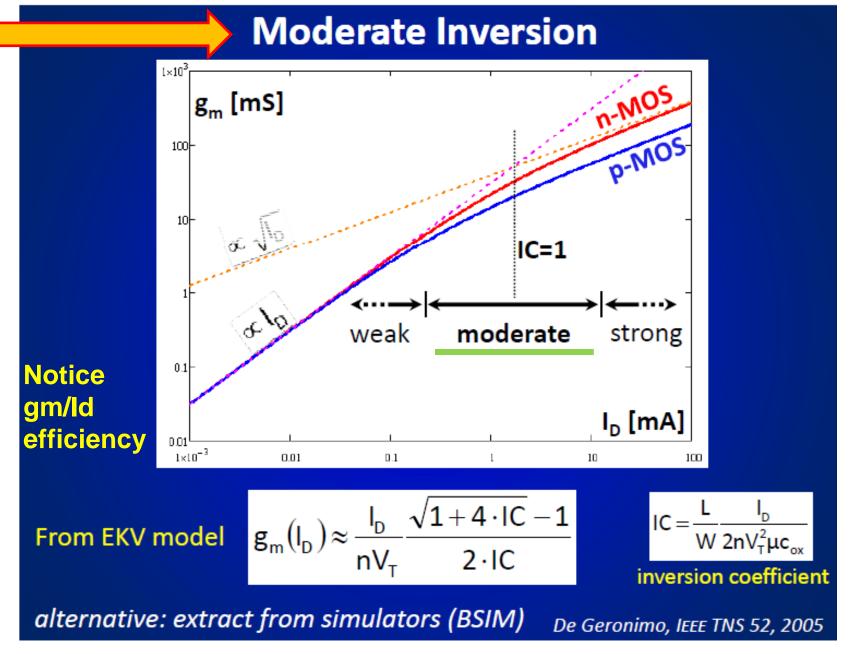
•
$$C_G = C_S/3$$

V_{GS} << V_{th} (weak inversion)

$$\mathbf{g}_{\mathsf{m}}\!\left(\mathbf{I}_{\mathsf{D}}\right)\!\approx\!\frac{\mathbf{I}_{\mathsf{D}}}{\mathsf{n}\mathsf{V}_{\mathsf{T}}}\!\propto\!\mathbf{I}_{\mathsf{D}}$$

$$ENC_{vw}^{2} \propto \frac{\left(C_{S} + C_{G}\right)^{2}}{I_{D}}$$

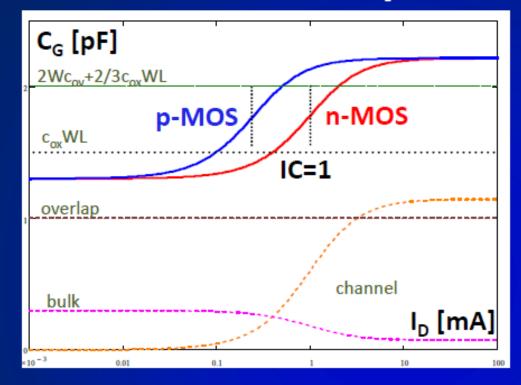
- independent of L
- $C_G = 0$ pushes back towards strong inversion



D. Dzahini Xdigit

De Geromino

Gate Capacitance



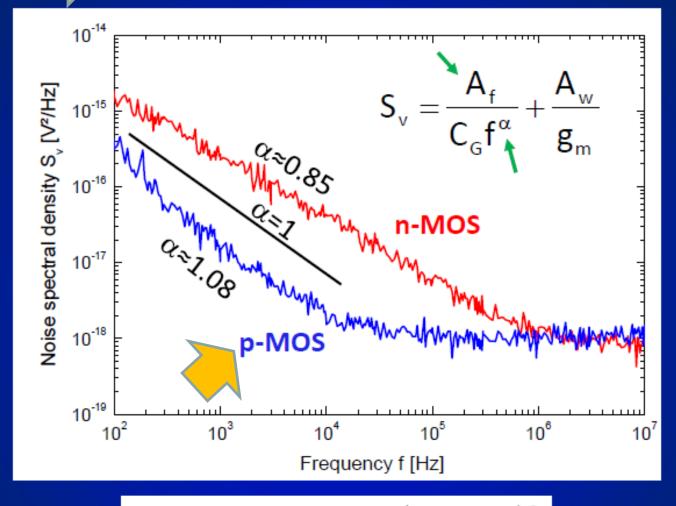
$$C_{G}(I_{D}) \approx 2c_{ov}W + C_{ox}WL\left(\gamma_{C}(IC) + \frac{n-1}{n}[1 - \gamma_{C}(IC)]\right)$$

$$\gamma_{c}(IC) \approx \left(\frac{3}{2} + \frac{1}{3} \frac{\sqrt{1 + 4 \cdot IC} + 1}{IC^{2}}\right)^{-2/3}$$

Both g_m and C_G push towards using n-channel and $L = L_{min}$

BUT, now let add the 1/f noise contribution

Low-Frequency Noise

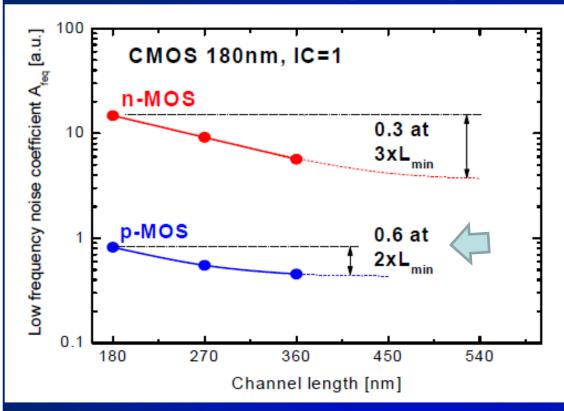


From transistor's low-freq. noise:

$$ENC_{vf}^{2} = a_{f}(\alpha) \frac{A_{f}}{\tau^{1-\alpha}} \frac{(C_{s} + C_{G})^{2}}{C_{G}}$$

depends on τ

Low-Frequency Noise vs L



$$S_{v} = \frac{A_{f}(L)}{C_{G}f^{\alpha}} + \frac{A_{w}}{g_{m}}$$

1/f equivalent, IEEE TNS 58, 2011

From transistor's low-freq. noise:

Conclusion 2

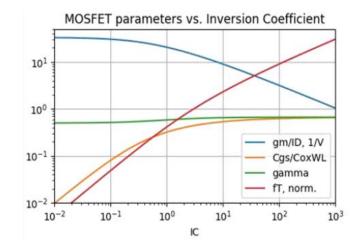
$$ENC_{vf}^{2} = a_{f}(\alpha) \frac{A_{f}(L)}{\tau^{1-\alpha}} \frac{(C_{s} + C_{G})^{2}}{C_{G}}$$

LF noise pushes towards p-channel & L > L_{min}

MOSFET parameters (summary)

Parameter	Symbol	Strong inversion value	Weak inversion value	
Transconductance	g _m	$\sqrt{2n\mu C_{ox} \frac{W}{L} I_{D}}$	$ \frac{qI_{D}}{nkT} \\ \ll C_{ox}WL $	
Input capacitance	C _{GS}	$\frac{2}{3}C_{ox}WL$	$\ll C_{ox}WL$	
Cutoff frequency	ω_{T}	g_m/C_{GS}		
Noise (white)	e _n ²,w	$\frac{8kTn}{3g_m}$	$\frac{2kTn}{g_m}$	
Noise (flicker)	e _n ² ,f	FC	$\frac{K_f}{C_{ox}WL}$	
Mismatch	σ(V _T)	$\overline{}$	$\frac{\alpha}{\overline{WL}}$	
Intrinsic voltage gain	A _{vo}	g_{i}	$_{m}/g_{d}$	

- Select <u>normalized current density</u> and gate length as primary design variables
- Interpolation formula* models the MOSFET's key parameters continuously from weak to strong inversion



^{*} C. Enz, F. Krummenacher, E. Vittoz, Analog Integrated Circuits and Signal Processing (1995) Binkley, D. (2007) 14th Intl. Conf. on Mixed Design of Integrated Circuits and Systems; Binkley et al. (2006) Analog ICs and Si

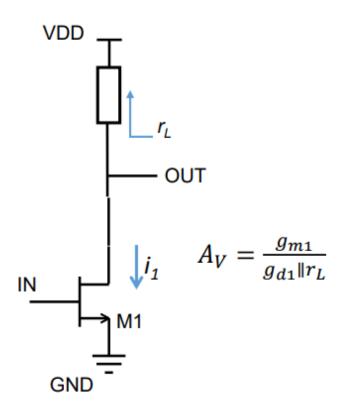
Processing

Paul O'connor

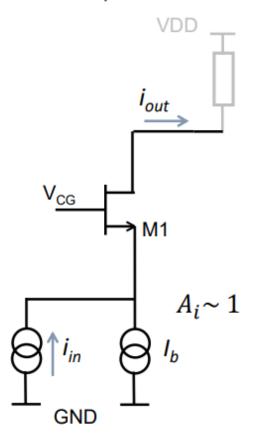
short-channel effects and parasitics not modeled

Topologies for preamp

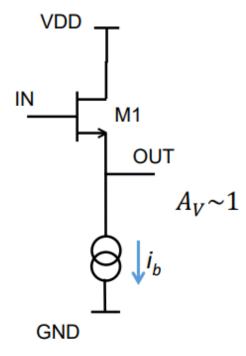
basic common-source stage voltage-in, voltage-out



basic common-gate stage current-in, current-out

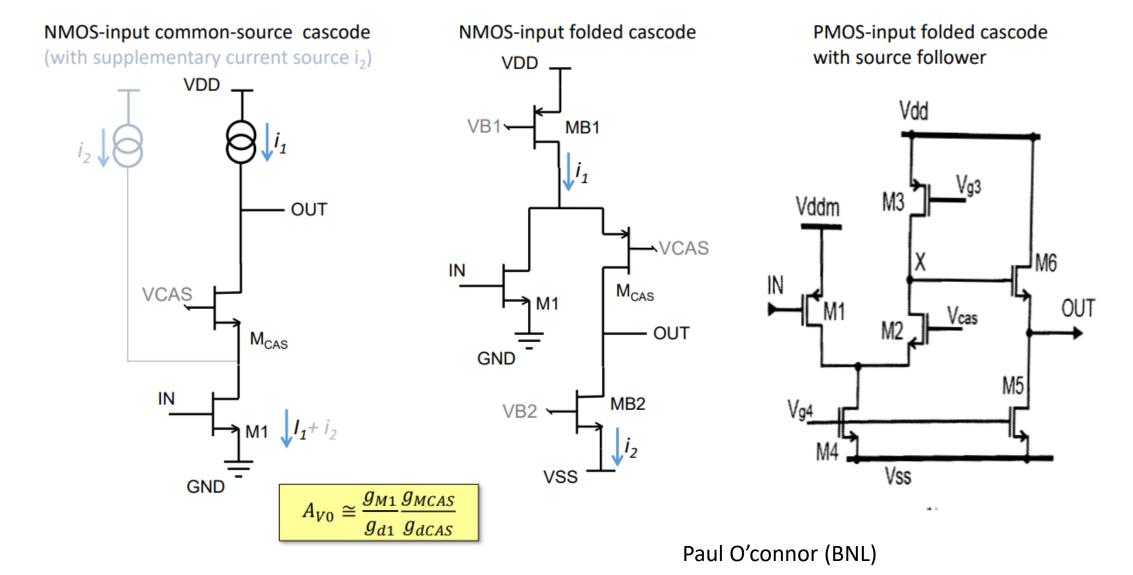


basic common-drain stage voltage-in, voltage-out (source follower)



Paul O'connor (BNL)

Common CSA/TIA preamplifiers topology

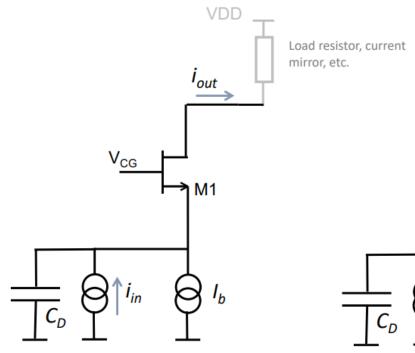


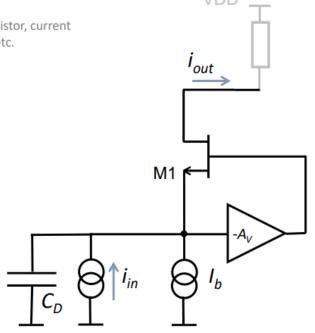
Current preamplifiers (Common gate) topologies

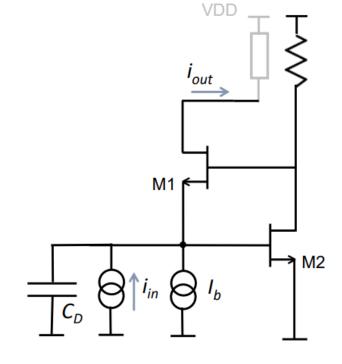
common gate

regulated common gate

RCG realization







$$Z_{in} = 1/g_{M1}$$

ENC dominated by *parallel* noise of M1

→ tradeoff of Z_{in}, ENC

$$Z_{in} = \frac{1}{g_{M1}A_V}$$

ENC dominated by **series** noise of M2 \rightarrow more options for tradeoff of Z_{in} , ENC

Preamp trends with agressive process

Preamp design & 'Scaling'

One may consider 2 prospection studies (old now !!)

1) Paul O'Connor => Brookhaven Lab, Upton, New York: 1,5µ au 180n

At constant power one save 23% in term of noise per generation: λ =0.7

ENC' =
$$\lambda^{3/4}$$
 * ENC

At constant noise: one save 60% of power per generation

$$P' = \lambda^3 * P$$

But in dynamique range, one lose 10% of SNR per generation

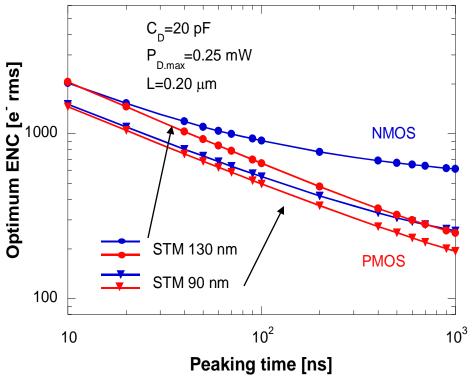
SNR' =
$$\lambda^{1/4}$$
 * SNR

2) L. Rattia NSS 2007 => Università degli Studi di Pavia : 100n et 90n

Next slides show some of L. Rattia' work

ENC vs peaking time, @ Pd=cte

L. Rattia NSS 2007 =>The 90nm leads to less ENC (noise) than the 130nm

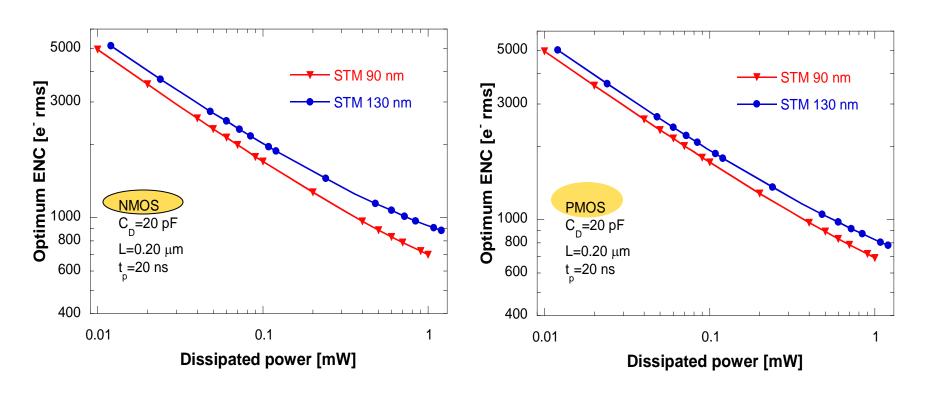


ENC was evaluated in the case of a second order, unipolar (RC²-CR) shaping processor

- In the explored peaking time and power range, **PMOS input device** always provides better noise performances than NMOS input (except for the 130 nm process at t_p close to 10 ns)
- Using the 90 nm process may yield quite significant improvement with respect to the 130 nm technology, especially when NMOS input charge preamplifiers are considered

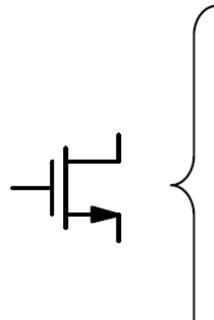
ENC as function of power necessary (P et N) for given tp

L. Rattia NSS 2007 => The 90nm needs less power at a constant noise level



- At t_p =20 ns, noise performances provided by NMOS and PMOS input devices in the 90 nm technology are comparable
- Better noise-power trade-off can be achieved by using the 90 nm technology

Figure of Merit for a MOS Process



Transit Frequency $\omega_T = \frac{g_m}{C}$

$$\omega_T = \frac{g_m}{C_{gs}}$$

Transconductor Efficiency

$$\frac{g_m}{I_D}$$

Intrinsic Gain

$$g_m r_o$$

DO NOT FORGET: You may optimize the bias point of input <u>transistor</u> (moderate inversion, for a gm/ld efficiency)

Topics for later sessions

How can one characterize a comparator for counting accurately?

In couting flow: Frequency of noise hits (fn); Threshold Vth; input noise (vn) ...

S. O. Rice *Mathematical analysis of random noise* [1945] Bell System Technical journal, 24; 46-156

- How often are noisy events counted?
- Noise at your comparator input?
- Threshold value above the baseline?
- Counting rate and so your bandwidth or τ ?

$$f_n = \frac{1}{2\pi\tau} e^{-(Vth^2/2Vn^2)}$$

Or Threshold over noise ratio

$$\frac{Vth}{Vn} = \sqrt{-2 * \ln(fn * 2\pi \tau)}$$

EXO: estimate f_n for V_{th}/V_n =7 for different τ

HELP for LTSPICE

```
Analysis
                                                        ;op
                                                        ;tf V(out) V3
Parameters
                                                        :dc V3 -0.1 0.1 0.0
Input Resistor
                                                        tran 0 0.1 0
                                                        ;ac dec 10 0.1 100MEG
;param RINP=1
.step param RINP list 1 10
                                                        .noise V(out) V3 dec 10 0.1 1
RE sets Drain current
                                                        Voltage Noise Measurements
param RE=249
                                                        .meas NOISE end1_10_RMS FIND V(inoise)@1 AT 10
.meas NOISE en1_10_RMS PARAM en1_10_RMS*0.707
;step param RE 80 300 10
                                                        .meas NOISE end1_1K_RMS FIND V(inoise)@1 AT 1K
.meas NOISE en1_1K_RMS PARAM_end1_1K_RMS*0.707
 RD sets Drain-Source voltage
.param RD=2.49K
                                                        .meas NOISE en1_LF_RMS INTEG V(inoise)@1*0.707 FROM .meas NOISE en1_LF_PP PARAM en1_LF_RMS*5
;step param RD 2500 5500 10
 Temperature
                                                        Current Noise Measurements
.param temp=25
                                                        .meas NOISE en21_100_RMS FIND V(inoise)@2-V(inoise)@1 AT
step temp -50 125 25;
                                                        .meas NOISE in 100 RMS PARAM en21 100 RMS/1e7
 Miscellaneous
                                                        .meas NOISE en21_LF_RMS INTEG (V(inoise)@2-V(inoise)@1) FR
                                                        .meas NOISE in_LF_PP PARAM (en21_LF_RMS/1e7)*5
```

LTSPICE help!

However, let's look at one to get the input voltage noise at 1kHz.

.meas NOISE en1_1k_RMS FIND V(inoise)@1 AT 1K

NOISE - Apply the measurement to a noise simulation

en1_1k_RMS - Just a name for the result. Used in the log file.

FIND - Specifies the measurement, which in this case is just getting a data value

V(inoise)@1 - The data set to use in the measurement. Details are below.

AT 1K - Selects the frequency of the data