

Needs in radioactive targets for fission studies at NFS

Diego Tarrío*, A. V. Prokofiev and S. Pomp

¹Department of Physics and Astronomy, Uppsala University (Sweden)

*email: diego.tarrio@physics.uu.se

Diego Tarrío — SANDA Target Workshop(Aug 8th, 2021)

Introduction

- **Uppsala University** is active in EU-funded projects **SANDA** and **ARIEL** aimed at **nuclear data measurements**, **education** and **development** of new facilities (**GANIL-NFS**).
- Activities were initiated in the CHANDA project, but postponed becaused of a delay in licensing of the NFS facility.
- We propose to measure, simultaneously, the neutron-induced fission of ²³⁵U, ²³⁸U and the neutron-proton elastic scattering, using the white neutron beam at NFS.
- Therefore, we need suitable targets of ²³⁵U and ²³⁸U, deposited on thin backings.
 - The specifications of the targets will be discussed later in this talk.
 - Let me explain you the idea first...

Improving neutron standards

- Our aim is to improve the knowledge in the neutron-induced fission cross-sections and fragment angular distributions in actinides.
- Neutron-induced cross sections are measured relative to one of the neutron standards, thus eliminating the need in neutron fluence measurements.
- Uncertainties in the standards will propagate to all measurements of other neutron cross-sections.
- **Goal:** to **improve the knowledge** in neutron-induced fission standards ²³⁵U(n,f) and ²³⁸U(n,f), relative to **neutron-proton elastic scattering**, in the range 1-40 MeV.
 - We aim at reaching 2% uncertainty.

Current status of data

- The newest version of the IAEA standard library is from 2006.
- The only recent data on ${}^{238}U(n,f)$ with respect with (n,p) differs by ~7% (Nolte 2007).
- Similar situation for ²³⁵U(n,f) vs. (n,p).
- An experiment has been done very recently at n_TOF, but only above 20 MeV.

Current status of data

- Scarce data on angular distributions for ²³⁵U(n,f) and ²³⁸U(n,f) reactions.
- Few data available above 20 MeV.
- Angular distributions and cross-sections are required to parametrize the fission barrier in actinides, thus improving the existing nuclear models.
 [M. Sin et al., Phys. Rev. C 74, 014608 (2006)]

- The newest version of the IAEA standard library is from 2006.
- The only recent data on ${}^{238}U(n,f)$ with respect with (n,p) differs by ~7% (Nolte 2007).
- Similar situation for ²³⁵U(n,f) vs. (n,p).
- An experiment has been done very recently at n_TOF, but only above 20 MeV.

Diego Tarrío — SANDA Target Workshop(Aug 8th, 2021)

Our proposal

- We plan to use the white neutron beam at GANIL-NFS to measure, simultaneously, the neutron-induced fission of ²³⁵U, ²³⁸U and the neutron-proton elastic scattering.
 - All the targets receive the same flux, thus removing systematic effects caused by variations on the beam intensity.
- As part of the experiment, we will also measure the **angular distributions** of ²³⁵U(n,f), ²³⁸U(n,f) in the same neutron energy range.
- Our proposal submitted to GANIL PAC on September 2020 has been accepted, and about 10 days of beam time are granted.

Upgrade of the Medley setup for fission

- Original Medley: 8 telescopes Si-Si-CsI(TI) at 20° intervals. The upgrade consists on:
- 2 PPACs (Parallel Plate Avalanche Chambers)
- 3 simultaneous targets: $^{238}U + CH_2 + ^{235}U$

UNIVERSITET

D. Tarrío et al., EPJ Web of Conf. 146, 03026 (2017) K. Jansson et al., Nucl. Inst. Meth. A 794, 141 (2015)

Diego Tarrío — SANDA Target Workshop(Aug 8th, 2021)

Upgrade of the Medley setup for fission

Three targets at a time:

 238 U + CH₂ + 235 U

- Timing detectors (PPACs) will be used to determine the neutron energy by the time of flight (TOF).
 - *Development of dedicated PPACs is ongoing progress at Uppsala University.

Diego Tarrío — SANDA Target Workshop(Aug 8th, 2021)

Upgrade of the Medley setup for fission

Three targets at a time:

 238 U + CH₂ + 235 U

- Timing detectors (PPACs) will be used to determine the neutron energy by the time of flight (TOF).
 - *Development of dedicated PPACs is ongoing progress at Uppsala University.
- Proton recoil from n-p scattering detected and identified in a forward telescope.

UPPSALA UNIVERSITET

²³⁸U target recently produced

Target needs and current status

- The development work of the ²³⁸U and ²³⁵U targets was initiated during CHANDA (in 2015), and the specifications have been agreed with JRC-Geel:
 - deposits of **25 mm in diameter**, small enough to fit into the central uniform part of the NFS neutron beam;
 - ~ 400 μg/cm² of the isotope on 40 μg/cm² polyimide backings;
 - mounted in a **1-mm thick AI ring** with **70 and 90 mm** inner and outer **diameter** (provided by JRC-Geel);
 - mechanical stability tests were done at JRC;
- isotopic purity: as high as reasonable achievable (>99.9% for ²³⁸U, and fissile contaminants should be avoided);
- homogeneity: as good as reasonable achievable (ideally <3%);
- **uncertainty in average thickness or total mass**: as good as reasonable achievable (ideally <1%).

Target needs and current status

²³⁸U target recently produced

Empty polyimide backing glued to the mounting Al ring

- **3 targets of each isotope** (²³⁵U and ²³⁸U) are requested;
- 3 empty polyimide backings mounted in AI rings are needed to perform background measurements;
 - Targets of ²³⁸U ready (360 µg/cm²). Being shipped to GANIL.
- Targets of ²³⁵U are expected to be ready in spring 2022.

Final remarks

- The GANIL-NFS neutron facility is finally ready. The first experimental campaign is starting in September.
- Considering the good progress on the target production at JRC-Geel, hopefully we will be able to do this experiment in a near future.
- Many thanks to the JRC group and, specially, to Goedele, for finding solutions to our requests!

Thank you for your attention!