

LDMX Goals

Overview

- Backgrounds
- 8 GeV Study
- **Results & Outlook**
- References

- Explore a range of light DM models, appearing as missing energy
- 2 Goal: Out of 10¹⁴ electrons on the target, no background event should be misclassified as the DM signal

The Dark Matter Signature

Photon Induced Background

Erik Wallin

Background 'Ladder' at 4 GeV

Background Rejection

Overview

Backgrounds

8 GeV Study

Results & Outlook

References

To distinguish signal and photo-nuclear background: A boosted decision tree is trained on ECal features, notably including the energy distribution around the projected electron and photon path. [1]

BDT Variables

Backgrounds

- 8 GeV Study
- **Results & Outlook**
- References

- Global features: Number of hits, summed energy of hits with no hits in neighbouring cells
 [...]
- Transverse features: Distribution of energy around the inferred electron and photon path [...]
- Longitudinal features: The average layer of a hit, layer of the deepest hit [...]

4 GeV Results

Overview

Backgrounds

8 GeV Study

Results & Outlook

References

After some cuts on the kinematics, the BDT cuts the background down by 99.94%.

	Photo-1	nuclear	Muon cor	nversion
	Target-area	ECal	Target-area	ECal
EoT equivalent	4×10^{14}	$2.1 imes 10^{14}$	8.2×10^{14}	2.4×10^{15}
Total events simulated	$8.8 imes 10^{11}$	4.65×10^{11}	6.27×10^8	8×10^{10}
Trigger, ECal total energy $< 1.5 \text{ GeV}$	1×10^8	2.63×10^8	$1.6 imes 10^7$	$1.6 imes 10^8$
Single track with $p < 1.2 \mathrm{GeV}$	2×10^7	2.34×10^8	3.1×10^4	$1.5 imes 10^8$
ECal BDT (> 0.99)	9.4×10^5	1.32×10^5	< 1	< 1
HCal max $PE < 5$	< 1	10	< 1	< 1
ECal MIP tracks = 0	< 1	< 1	< 1	< 1

The HCal should see no activity at all, but even then some background events remain.

Kaon Background

Overview

Backgrounds

- 8 GeV Study
- **Results & Outlook**
- References

The challenging background is photo-nuclear production of K^{\pm} , which with their 10⁻⁸ second lifetime may decay into e.g. $\rightarrow \mu^+ \nu_{\rm e}$ while still inside the calorimeter.

A simple tracking algorithm searching for short tracks is employed to remove these remaining kaon background events.[1]

Background at 8 GeV

challenging kaon background is more common. Erik Wallin

UNIVERSITY

LDMX 8 GeV Photon Induced Background

Increasing the Beam Energy

- Overview
- Backgrounds
- 8 GeV Study
- **Results & Outlook**
- References

Some motivations for going to 8 GeV:

- Possibly clearer features in the ECal
- Better signal production in some models
- Some backgrounds are more rare

Backgrounds

8 GeV Study

Results & Outlook

References

Background Rejection Efficiencies

Preliminary results at 8 GeV beam energy:

	Photo-n	uclear	Muon con	version
	Target-area	\mathbf{ECal}	Target-area	\mathbf{ECal}
EoT Equivalent		$1.97 imes 10^{14}$		
Trigger, ECal total energy $< 3160 \text{ MeV}$		2.67×10^8		
Single track with $p < 2400 \text{ MeV}$		2.48×10^8		
ECal BDT (> 0.99988)		$9.10 imes 10^3$		
HCal max $PE < 8$		< 1		
ECal MIP tracks $= 0$		< 1		

Seemingly no Kaon tracking needed. 15x better BDT efficiency than at 4 GeV.

Comparison

Overview

8 GeV:

Backgrounds

8 GeV Study

Results & Outlook

References

	Photo-n	uclear	Muon conv	rsion
	Target-area	ECal	Target-area	ECal
EoT Equivalent		$1.97 imes 10^{14}$		
Trigger, ECal total energy $< 3160 \text{ MeV}$		2.67×10^8		
Single track with $p < 2400 \text{ MeV}$		2.48×10^8		
ECal BDT (> 0.99988)		9.10×10^{3}		
$HCal \max PE < 8$		< 1		
ECal MIP tracks $= 0$		< 1		

4 GeV:

	Photo-	nuclear	Muon con	nversion
	Target-area	ECal	Target-area	ECal
EoT equivalent	4×10^{14}	$2.1 imes 10^{14}$	$8.2 imes 10^{14}$	2.4×10^{15}
Total events simulated	8.8×10^{11}	4.65×10^{11}	6.27×10^8	8×10^{10}
Trigger, ECal total energy $< 1.5~{\rm GeV}$	1×10^8	$2.63 imes 10^8$	$1.6 imes 10^7$	1.6×10^8
Single track with $p < 1.2 \mathrm{GeV}$	2×10^7	2.34×10^8	3.1×10^4	$1.5 imes 10^8$
ECal BDT (> 0.99)	9.4×10^5	1.32×10^5	< 1	< 1
HCal max $PE < 5$	< 1	10	< 1	< 1
ECal MIP tracks $= 0$	< 1	< 1	< 1	< 1

Erik Wallin

Signal Efficiencies

Overview

Backgrounds

8 GeV Study

Results & Outlook

References

Erik Wallin

Signal efficiency around 50%, after kinematic and BDT cuts. (Optimized for a 1 MeV DM mediator mass)

21st November 2021 14/17

Outlook

Overview

- Backgrounds
- 8 GeV Study
- **Results & Outlook**
- References

Every photo-nuclear background event, equivalent of $2 \cdot 10^{14}$ electrons on the target, is rejected. More than 50% of signal events still remain. The zero-background goal is reached at both 4 and 8 GeV.

From now on:

- The high granularity of the ECal makes it suitable for various machine learning studies[2][3], as there is a lot of geometric detail present in the events. The BDT does not utilize the full potential of the detector.
- Pile-up studies

\mathbf{O}		
()	uestions?	
$\boldsymbol{\prec}$		

Overview
Backgrounds
8 GeV Study
Results & Outlook
References
References

References I

Overview

- Backgrounds
- 8 GeV Study
- **Results & Outlook**
- References

- Torsten Åkesson et al. A High Efficiency Photon Veto for the Light Dark Matter eXperiment. 2019. arXiv: 1912.05535 [physics.ins-det].
- Leo Östman. Imaging Using Machine Learning for the LDMX Electromagnetic Calorimeter. LUP Student Papers. 2020.
- Huilin Qu and Loukas Gouskos. "Jet tagging via particle clouds". In: *Physical Review* D 101.5 (Mar. 2020). issn: 2470-0029. doi: 10.1103/physrevd.101.056019. url: http://dx.doi.org/10.1103/PhysRevD.101.056019.

Harrison Siegel. Implementation of Radius of Containment in Boosted Decision Tree for Light Dark Matter eXperiment (LDMX). July 2019.